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In mathematics, concentration of measure (e.g. about a median) is a prin-
ciple that is applied in measure theory, probability and combinatorics, and
has consequences for other fields such as Banach space theory. Informally, it
states that Lipschitz functions that depend on many parameters are almost
constant.

The concentration of measure phenomenon was put forth in the early
1970s by Vitali Milman in his works on the local theory of Banach space,
extending an idea going back to the work of Paul Lévy. The idea of concen-
tration of measure (which was discovered by V.Milman) is arguably one of
the great ideas of analysis in our times. While its impact on Probability is
only a small part of the whole picture, this impact should not be ignored. It
was further developed in the works of Milman and Mikhail Gromov, Maurey,
Pisier, Schechtman, Michel Talagrand, Ledoux, and others.

In our notes, we would start with isoperimetric problems, introducing
Bobkov’s Inequality, Maurey-Pisier Theorem etc. Then, we would state and
prove Brunn-Minkowski Inequality, Borell’s Inequality, Prékopa-Leindler In-
equality, and Gromov-Milman Theorem. Then, we would discuss Martingale
method, Talagrand’s Induction method. We will also mention Khintchine’s
Inequality and Kahane’s Inequality. We will then move onto Spectral meth-
ods, introducing Poincaré’s Inequality, log-Sobolev Inequality, Herbst’s The-

∗These notes are based on the same-name course given by Prof Assaf Naor at Courant
Institute in the fall semester in 2008. I attended all the lectures but didn’t spend enough
time studying the materials at that time. However, after learning some spin glasses and
other stuff in probability theory, I started to appreciate the power and beauty of concen-
tration of measure. All the credits are due to Prof Assaf Naor whilst I’m responsible for
the typos and mistakes in these notes.
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orem and tensorization. Results by Gross, Schechtman-Zinn, and Bobkov-
Ledoux-Maurey-Talagrand would be mentioned. Finally, we will discuss
briefly the Stein’s method.

Basic setting: (X, d) is a metric space, F the σ-algebra of Borel sets on
X and µ a Borel (probability) measure on X.

Theorem 1. (Lévy’s Inequality) Consider (Sn−1, ‖ · ‖2), where Sn−1 is the
Euclidean sphere in Rn and ‖·‖2 is the Euclidean metric. Let µ be the normal-
ized surface area measure. If A ⊆ Sn−1 is Borel measurable and µ(A) ≥ 1/2,
then, for any ε > 0, we have

µ(x ∈ Sn−1 : d(x,A) ≥ ε) ≤ 2e−nε
2/64.

We have an equivalent form of the Lévy’s Inequality above:

Theorem 2. If f : Sn−1 → R is Lipschitz with constant L, i.e.

|f(x)− f(y)| ≤ L‖x− y‖2.

Then, there exists c ∈ R, such that, for any ε > 0,

µ(x ∈ Sn−1 : |f(x)− c| ≥ ε) ≤ 4e−
nε2

64L2 .

The Isoperimetric Problem: Given a ∈ (0, 1), and ε > 0, we aim to find
the Borel subsets A ⊆ X with µ(A) = a such that µ(Aε) is as small as
possible, where

Aε = {x ∈ X : d(x,A) := inf{y ∈ A, d(x, y)} < ε}.

Definition 1. For A ⊂ X Borel, the boundary measure is defined as

µ+(A) = lim inf
ε→0

µ(Aε)− µ(A)

ε
= lim inf

ε→0

1

ε
µ(Aε\A).

Definition 2. Iµ is called the isoperimetric function if it is the largest func-
tion such that

∀A ⊆ X, µ+(A) ≥ Iµ(µ(A)).

Definition 3. Given a ∈ [0, 1], ε > 0, define

φa(ε) = inf{µ(Aε) : A ⊆ X,µ(A) ≥ a}.
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The concentration of measure problem is to find good lower bounds on
φa(ε).

Lemma 1. Let (X, d) be a metric space and µ is the Borel measure. If
f : X → R is Lipschitz with constant L, then, there exists some M ∈ R,
such that, for any ε > 0, we have

µ(x ∈ X : |f(x)−M | ≥ ε) ≤ 2
(

1− φ1/2

( ε
L

))
.

Proof. Let M be a median of f , i.e.

M = inf{t ∈ R : µ(x ∈ X : f(x) > t) ≥ 1/2}.

And let A = {x ∈ X : f(x) > M}. Then

x ∈ Aε/L ⇒ ∃y, d(x, y) <
ε

L
⇒ |f(x)− f(y)| ≤ Ld(x, y) < ε,

and
y ∈ A⇒ f(y) ≥M ⇒ f(x) > M − ε.

Hence {x ∈ X : f(x) ≤ M − ε} ⊆ X\Aε/L and µ(A) ≥ 1/2. Therefore, by
the definition of φ1/2, we have

µ(x ∈ X : f(x) ≤M − ε) ≤ 1− φ1/2

( ε
L

)
.

Now, let B = {x ∈ X : f(x) ≤M}. Then

µ(x ∈ X : f(x) ≥M + ε) ≤ 1− φ1/2

( ε
L

)
.

Hence, we have

µ(x ∈ X : |f(x)−M | ≥ ε) ≤ 2
(

1− φ1/2

( ε
L

))
.

Now, we will discuss isoperimetric problem for Gaussian measure. Here
are just some notations we would use:

φ(x) =
1√
2π
e−x

2/2, Φ(x) =

∫ x

−∞
φ(s)ds.

ψ : [0, 1]→ [0, 1/
√

2π], ψ(t) = φ(Φ−1(t)).
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Proposition 1. (i) ψ(0) = ψ(1) = 0.
(ii) ψ(1− x) = ψ(x) for all x ∈ [0, 1].
(iii) ψ′′ψ = −1.
(iv) (ψ′)2 is a convex function on [0, 1].

Proof. (i) ψ(0) = φ(Φ−1(0)) = φ(−∞) = 0. Similarly, ψ(1) = φ(∞) = 0.
(ii) ψ(1− x) = φ(Φ−1(1− x)) = φ(−Φ−1(x)) = φ(Φ−1(x)) = ψ(x).
(iii) Direct computations.
(iv)

(
(ψ′)2

)′′
= 2ψ′ψ′′ = −2

ψ′

ψ
= (−2)

ψ′′ψ − (ψ′)2

ψ2
= 2

1 + (ψ′)2

ψ2
> 0.

Let φn : Rn → R,

φn(x) =
1

(2π)n/2
e−
‖x‖22

2 ,

and define the n-dimensional Gaussian measure as

γn(A) =

∫
A

φn(x)dx, A ⊆ Rn.

Note that γn is invariant under rotations, i.e., for any orthogonal n×n matrix
U , and any A ⊆ Rn, we have γn(A) = γn(UA).

Theorem 3. (Bobkov’s Inequality)(Bn)
If f : Rn → [0, 1] is smooth (locally Lipschitz), then,

ψ

(∫
Rn
fdγn

)
≤
∫

Rn

√
‖∇f‖2

2 + ψ(f)2dγn.

Before we start to prove Bobkov’s Inequality, let us state another result
and use Bobkov’s Inequality to prove it.

Theorem 4. (Borell-Sudakov-Tsirelson) For any Borel A ⊆ Rn, we have

γn(Aε) ≥ Φ(Φ−1(γn(A)) + ε).
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Proof. Now, for A ⊆ Rn, define

f(x)


1 x ∈ A
1− d(x,A)

ε
x ∈ Aε\A

0 x ∈ Rn\Aε

Then, f is Lipschitz with constant 1/ε and ‖∇f‖2 ≤ 1/ε a.e. Now, also use
the Bobkov’s Inequality, we get

ψ(γn(A)) ≤ ψ

(∫
Rn
fdγn

)
≤
∫

Rn

√
‖∇f‖2

2 + ψ(f)2dγn

≤
∫

Rn
‖∇f‖2dγn +

∫
Rn
ψ(f)dγn

≤ 1

ε
γn(Aε\A) + γn(Aε\A).

Hence, we have

γ+
n (A) = lim inf

ε→0

1

ε
γn(Aε\A) ≥ ψ(γn(A)),

and thus Iγn ≥ ψ. Define h(ε) = Φ−1(γn(Aε)) and w.l.o.g. A is a finite union
of balls. Then, we get

h′(ε) =
γ+
n (Aε)

φ(Φ−1(γn(Aε)))
=

γ+
n (Aε)

ψ(γn(Aε))
≥ 1,

where I used the fact that

d

dε
γn(Aε) = lim

h→0

γn(Aε + h)− γn(Aε)

h
= γ+

n (Aε).

Now, since h′(ε) ≥ 1 for all ε, we have h(ε) ≥ h(0) + ε. Thus

Φ−1(γn(Aε)) ≥ Φ−1(γn(A)) + ε,

which implies that
γn(Aε) ≥ Φ(Φ−1(γn(A)) + ε).
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Remark 1. In general, if Iµ ≥ g′ ◦ g−1, then

µ(Aε) ≥ g(g−1(µ(A)) + ε).

Remark 2. The solution of the isoperimetric problem for γn will be half space.
Let a = γn(A) and there exists s such that Φ(s) = a, i.e. s = Φ−1(a). Now
define

H = {x ∈ Rn : x1 ≤ s} and Hε = {x ∈ Rn : x1 < s+ ε}.

Then, we have

γn(H) = Φ(s) = a and γn(Hε) = Φ(s+ ε) = Φ(Φ−1(a) + ε).

Now, we will try to prove the Bobkov’s Inequality. Let Bn denote the
Bobkov’s Inequality for Rn, then, we have the following lemma.

Lemma 2. Bn ∧Bm ⇒ Bn+m.

Proof. f : Rn+m → [0, 1] smooth. Rn+m = Rn × Rm. Write f = f(x, y),
x ∈ Rn, y ∈ Rm. For a fixed x ∈ Rn, define

g(x) =

∫
Rm

f(x, y)dγm(y).

Then, it is clear that

∇g(x) =

∫
Rm
∇xfdγm(y).

Also, notice that for any u, v ≥ 0, we have(∫
udµ

)2

+

(∫
vdµ

)2

≤
(∫ √

u2 + v2dµ

)2

.
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Therefore, we get

ψ

(∫
Rn+m

f(x, y)dγn(x)dγm(y)

)
= ψ

(∫
Rn
g(x)dγn(x)

)

≤
∫

Rn

(∥∥∥∥∫
Rm
∇xf(x, y)dγm(y)

∥∥∥∥2

2

+ ψ

(∫
Rm

f(x, y)dγm(y)

)2
)1/2

dγn(x)

≤
∫

Rn

[(∫
Rm
‖∇xf(x, y)‖2dγm(y)

)2

+

(∫
Rm

[
‖∇yf(x, y)‖2

2 + ψ(f(x, y))2
]1/2

dγm(y)

)2 ]1/2

dγn(x)

≤
∫

Rm

∫
Rn

[
‖∇xf(x, y)‖2

2 + ‖∇yf(x, y)‖2
2 + ψ(f(x, y))2

]1/2
dγn(x)dγm(y)

=

∫
Rn+m

√
‖∇f‖2

2 + ψ(f)2dγn+m.

Corollary 1. To prove Bobkov’s Inequality, it is enough to prove B1.

In order to prove B1, we will introduce a discrete version of Bobkov’s
Inequality first, which will be useful later.

Let Ωn = {±1}n and µ be the uniform probability measure on Ωn. For
f : Ωn → R, define

∂if(x1, x2, · · · , xn) =
1

2
[f(x1, · · · , xn)− f(x1, · · · , xi−1,−xi, xi+1, · · · , xn)],

and ∇f = (∂1f, ∂2f, · · · , ∂nf) ∈ Rn.

Theorem 5. (Discrete Bobkov’s Inequality)(DBn)
For any f : {±1}n → [0, 1], we have

ψ

(∫
{±1}n

fdµ

)
≤
∫
{±1}n

√
‖∇f‖2

2 + ψ(f)2dµ.

Lemma 3. DBn ∧DBm ⇒ DBn+m.

Proof. The proof is similar to the proof of Bn ∧Bm ⇒ Bn+m.

Lemma 4. DBn,∀n⇒ B1.
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Proof. f : R → [0, 1] smooth and sup |f ′|, sup |f ′′| < ∞. Define Fn :
{±1}n → [0, 1] as

Fn(x1, · · · , xn) = f

(
x1 + · · ·+ xn√

n

)
.

Applying Mean Value Theorem, we get∣∣∣∣∣‖∇Fn(x1, · · · , xn)‖2
2 − f ′

(
x1 + · · ·+ xn√

n

)2
∣∣∣∣∣

=

∣∣∣∣∣∣∣
n∑
i=1

f
(
x1+···+xn√

n

)
− f

(
x1+···+xi−1−xi+···+xn√

n

)
2

2

− 1

n
f ′
(
x1 + · · ·+ xn√

n

)2

∣∣∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣ 1nf ′
(
x1 + · · ·+ xi−1 + ξi + xi+1 + · · ·+ xn√

n

)2

− 1

n
f ′
(
x1 + · · ·+ xn√

n

)2
∣∣∣∣∣

≤ 2

n
‖f ′‖∞

n∑
i=1

∣∣∣∣f ′(x1 + · · ·+ xi−1 + ξi + xi+1 + · · ·+ xn√
n

)
− f ′

(
x1 + · · ·+ xn√

n

)∣∣∣∣
≤ 2

n
‖f ′‖∞

n∑
i=1

2√
n
|f ′′(ηi)| ≤

4‖f ′‖∞‖f ′′‖∞√
n

.

Therefore, we have∫
{±1}n

√
‖∇Fn‖2

2 + ψ(Fn)2dµ

≤
∫
{±1}n

√
f ′
(
x1 + · · ·+ xn√

n

)2

+ f

(
x1 + · · ·+ xn√

n

)2

+O(
1√
n

)

−→
∫

R

√
(f ′)2 + ψ(f)2dγ1 by CLT.

Now, applying DBn to Fn, we get∫
{±1}n

√
‖∇Fn‖2

2 + ψ(Fn)2dµ ≥ ψ

(∫
{±1}n

Fndµ

)
= ψ

(∫
{±1}n

f

(
x1 + · · ·+ xn√

n

)
dµ

)
−→ ψ

(∫
R
fdγ1

)
by CLT.
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Now, in order to prove the Bobkov’s Inequality, it suffices to prove DB1.
For f : {±1} → [0, 1], f(1) = a, f(−1) = b, where a, b ∈ [0, 1], then it suffices
to prove the following result.

Lemma 5. (DB1) For any a, b ∈ [0, 1], we have

ψ

(
a+ b

2

)
≤ 1

2

√(a− b
2

)2

+ ψ(a)2 +

√(
a− b

2

)2

+ ψ(b)2

 .

Proof. Fix c ∈ [0, 1], g(x) = ψ(c+ x)2 + x2, where

x ∈ ∆(c) := [−min{c, 1− c},min{c, 1− c}].

Choosing c = a+b
2

and x = a−b
2

, we need to prove that

√
g(0) ≤

√
g(x) +

√
g(−x)

2
.

Now, after squaring twice, it is equivalent to prove that

16g(0)2 + (g(x)− g(−x))2 ≤ 8g(0)(g(x) + g(−x)).

Set h(x) := g(x)− g(0) = ψ(c + x)2 + x2 − ψ(c)2. Our goal is to prove that
for fixed c ∈ [0, 1], then,

(h(x)− h(−x))2 ≤ 8ψ(c)2(h(x) + h(−x)) ∀x ∈ ∆(c).

Next, notice that the function R(x) := h(x) + h(−x)− 2ψ′(c)x2 is convex on
∆(c), because

R′′(x) = ψ

[
ψ′(c+ x)2 + ψ′(c− x)2

2
− ψ′(c)2

]
≥ 0,

by Jensen’s Inequality. Now, R is even, convex and R(0) = 0, which implies
that R(x) ≥ R(0) = 0, i.e.

h(x) + h(−x) ≥ 2ψ′(c)2x2.

Hence, it suffices to prove that

16ψ′(c)2ψ(c)2x2 ≥ (h(x)− h(−x))2,
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or, equivalently,

4ψ(c)|ψ′(c)| ≥
∣∣∣∣h(x)− h(−x)

x

∣∣∣∣ =

∣∣∣∣ψ(c+ x)2 − ψ(c− x)2

c

∣∣∣∣ .
Since by Proposition 1, ψ is symmetric around 1/2, w.l.o.g., c ∈ [0, 1/2], x ≥
0, 0 ≤ x < c ≤ 1/2 and ψ(c+ x) ≥ ψ(c− x). So we need to prove

4ψ(c)ψ′(c) ≥ ψ(c+ x)2 − ψ(c− x)2

x
.

Set u(x) := ψ(c+ x)2 − ψ(c− x)2. Then, using ψ′′ψ = −1 from Proposition
1, we get

u′′(x) = 2(ψ′(c+ x)2 − ψ′(c− x)2) ≤ 0,

since by Proposition 1, (ψ′)2 is convex and symmetric about 1/2. Now u is
concave and nonnegative, thus u(x) ≤ u(0).

We now completed the proof of DB1, and hence Bobkov’s Inequality.

Corollary 2. If f : Rn → R is Lipschitz with constant L, then ∃M ∈ R,
such that

γn (x ∈ Rn : |f(x)−M | ≥ ε) ≤ Ke−Cε
2/(2L2),

where K is a universal constant.

Proof. For A ⊆ Rn such that α := γn(A) ≥ 1/2, then, by Theorem 4,

γn(Aε) ≥ Φ(Φ−1(α) + ε) = 1− 1√
2π

∫ ∞
Φ−1(α)+ε

e−x
2/2dx

≥ 1− 1√
2π

∫ ∞
ε

e−x
2/2dx ≥ 1− K

2
e−Cε

2/2,

for some universal constants K and C. Now let M be the median of f and
define

A = {x ∈ Rn : f(x) > M} and B = {x ∈ Rn : f(x) ≤M}.

Then, we have γn(A) = γn(B) = 1/2, and

γn (x ∈ Rn : |f(x)−M | ≥ ε)

≤ γn (x ∈ Rn : f(x) ≥M + ε) + γn (x ∈ Rn : f(x) ≤M − ε)
≤ γn(Rn\Aε/L) + γn(Rn\Bε/L) ≤ Ke−Cε

2/(2L2).
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Proposition 2. (X, d) is a metric space and µ is the Borel probability mea-
sure. f : X → R. The followings are equivalent:

(i) ∃K1, δ1, ∃A ∈ R, such that ∀C > 0, P(|f − A| ≥ C) ≤ K1e
−δ1C2

.
(ii) ∃K2, δ2, such that ∀C > 0, P(|f − f̃ | ≥ C) ≤ K2e

−δ2C2
, where f, f̃

are independent identical distributions.
(iii) ∃K3, δ3, such that ∀C > 0, P(|f − Ef | ≥ C) ≤ K3e

−δ3C2
.

(iv) ∃K4, δ4, such that ∀C > 0, P(|f −Mf | ≥ C) ≤ K4e
−δ4C2

, where Mf

is the median of f .
Moreover, if we have

K1 ≤ K4 ≤ 2K3 ≤ 2K2 ≤ 4K1 and δ1 ≥ δ4 ≥
δ3

4
≥ δ2

8
≥ δ1

32
,

then, the inequalities in (i)-(iv) can hold simultanenously.

Proof. (i)⇒(ii).

P(|f − f̃ | ≥ C) ≤ P
(
|f − A| ≥ C

2

)
+ P

(
|f̃ − A| ≥ C

2

)
≤ 2K1e

−δ1 C
2

4 .

(ii)⇒(iii). For λ > 0,

E
(
eλ

2|f−f̃ |2
)

=

∫ ∞
0

2λ2Ceλ
2C2P(|f − f̃ | ≥ C)dC

≤
∫ ∞

0

2λ2Ceλ
2C2

K2e
−δ2C2

dC.

Choose λ =
√

δ2
2

and Ee
δ2
2
|f−f̃ |2 ≤ K2. But φ(t) := eδ

2
2t

2/2 is convex. Hence

K2 ≥ Ef,f̃e
δ2
2
|f−f̃ |2 ≥ Efe

δ2
2
|f−Ef |2 .

Hence, using Markov’s Inequality, we have

P(|f − Ef | ≥ C) = P
(
e
δ2
2
|f−Ef |2 ≥ e

δ2
2
C2
)

≤ e−
δ2
2
C2Ee

δ2
2
|f−Ef |2 ≤ K2e

− δ2
2
C2

.

(iii)⇒(iv). Let C0 =
√

(log 2K3)/δ3. Then,

P(|f − Ef | ≥ C0) ≤ 1

2
= K3e

−δ3C2
0 .
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We get P(f ≥ C0 + Ef),P(f ≤ C0 − Ef) ≤ 1/2, hence,

Ef − C0 ≤Mf ≤ Ef + C0.

So, if C ≥ 2C0, then

P(|f −Mf | ≥ C) ≤ P(|f − Ef | ≥ C − C0)

≤ K3e
−δ3(C−C0)2 ≤ K3e

− δ3
4
C2

.

If C ≤ 2C0, then

e−
δ3
4
C2 ≥ e−

δ3
4
C2

0 =
1

2K3

.

Therefore,
P(|f −Mf | ≥ C0) ≤ 1 ≤ 2K3e

−δ3C2/4.

(iv)⇒(i). Trivial.

Remark 3. We can also formulate and prove a version for general tails.

Now, let us discuss the case of the Euclidean sphere:

Sn−1 := {x ∈ Rn : ‖x‖2 = 1}.

Let µ be the normalized surface area measure on Sn−1 and let d be the
geodesic metric on Sn−1.

Theorem 6. (Lévy’s Theorem) Balls (spherical caps) are the solutions of
the isoperimetric problems on Sn−1. i.e. if we have A ⊆ Sn−1, x ∈ Sn−1,
r > 0 such that

µ(A) = µ(y ∈ Sn−1 : d(x, y) ≤ r}.
Then µ(Aε) ≥ µ(B(x, r + ε)).

Theorem 7. f : Sn−1 → R, Lipschitz with constant L. Then,

µ

(∣∣∣∣f(x)−
∫
Sn−1

fdµ

∣∣∣∣ ≥ ε

)
≤ Ke−

Cnε2

L2 .

Theorem 8. (Maurey-Pisier) F : Rn → R, Lipschitz with constant L.
γn ∼ (g1, . . . , gn), where g1, g2, . . . , gn are i.i.d. standard Gaussian random
variables. Then,

P(|F (g1, . . . , gn)− EF (g1, . . . , gn)| ≥ t) ≤ 2e−
2t2

π2L2 .

12



Proof. By approximation, we may assume that F is continuously differen-
tiable. Let

G = (g1, . . . , gn) and H = (h1, . . . , hn)

be independent Gaussians. For θ ∈ [0, π
2
], define Gθ = G sin θ+H cos θ ∈ Rn.

Then, d
dθ
Gθ = G cos θ −H sin θ. Since(

Gθ
d
dθ
Gθ

)
=

(
sin θ cos θ
cos θ − sin θ

)(
G
H

)
and we know the orthogonal transformation of Gaussian is again Gaussian,
thus, (Gθ,

d
dθ
Gθ) has the same distribution as (G,H) (We call this Key Fact).

Let φ : R→ R be any convex function. By Jensen’s Inequality and Key Fact,

EG(φ(F (G)− EHF (H))) ≤ EG,Hφ(F (G)− F (H))

= E

[
φ

(∫ π/2

0

d

dθ
F (Gθ)dθ

)]
= E

[
φ

(∫ π/2

0

〈∇F (Gθ),
d

dθ
Gθ〉dθ

)]

≤ 2

π
E
∫ π/2

0

φ

(
π

2
〈∇F (Gθ),

d

dθ
Gθ〉dθ

)
= Eφ

(π
2
〈∇F (G), H〉dθ

)
.

Therefore, we have

E(φ(F (G)− EF (G))) ≤ Eφ

(
π

2

n∑
i=1

∂F

∂xi
(G)hi

)
.

For λ ∈ R, φ(t) = eλt, we have

E
(
e
λπ

2

Pn
i=1

∂F
∂xi

(G)hi
)

= EG

n∏
i=1

EHe
λπ

2
∂F
∂xi

(G)hi

= EGe
1
2
λ2π2

4

Pn
i=1

“
∂F
∂xi

(G)
”2

≤ e
λ2π2L2

8 .

Thus, for any λ ∈ R,

Eeλ(F (G)−EF (G)) ≤ e
λ2π2L2

8 .

DefineX := F (G)−EF (G). Then, for any λ ∈ R, Eeλx ≤ eπ
2L2λ2/8. Applying

Markov’s Inequality, we get

P(X ≥ t) = P(eλX ≥ eλt) ≤ e−λtEeλX ≤ e−λt+
π2L2λ2

8 .

Now, let ψ(λ) = −λt + π2L2λ2

8
. Minimizing ψ over λ, we get our desired

result.
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Theorem 9. (Lévy’s Isoperimetric Theorem) Let µ be the normalized surface
measure on Sn−1 with Euclidean metric. A ⊆ Sn−1 is Borel and C ⊆ Sn−1 is
a cap (ball in the Euclidean metric) with µ(C) = µ(A). Then, for any ε > 0,
µ(Aε) ≥ µ(Cε).

Definition 4. For A,B ⊆ Rn, define the Minkowski sum of A and B as

A+B := {a+ b : a ∈ A, b ∈ B}.

Theorem 10. (Brunn-Minkowski Inequality) If A,B ⊆ Rn are compact and
nonempty, then

Vol(A+B)
1
n ≥ Vol(A)

1
n + Vol(B)

1
n ,

where the equality holds if and only if A = x + rB for some x ∈ Rn, r > 0,
up to measure zero.

Proof. It is enough to prove the case when A,B are disjoint unions of axis
parallel boxes. Let A,B be disjoint unions of finitely many axis parallel boxes
and K be the total number of boxes. Let us do induction on K.

For K = 2, A =
∏n

i=1 Ii, B =
∏n

i=1 Ji, where Ii, Ji ⊆ R are intervals.
Let ai = Vol(Ii) and bi = Vol(Ji), then Vol(A + B) =

∏n
i=1(ai + bi). So,

we want to show that
∏n

i=1(ai + bi)
1/n ≥

∏n
i=1 a

1/n
i +

∏n
i=1 b

1/n
i . This follows

from AM-GM since(
n∏
i=1

ai
ai + bi

)1/n

+

(
n∏
i=1

bi
ai + bi

)1/n

≤ 1

n

n∑
i=1

ai
ai + bi

+
1

n

n∑
i=1

bi
ai + bi

= 1.

Next, let’s do the induction step. Let H be an axis parallel hyperplane such
that on both sides of H there is an entire box from A. (Such a hyperplane
H always exists.) Let H+, H− be the two sides of the hyperplane. Define

Ã = A ∩H+ and Â = A ∩H−.

Vol(Ã)/Vol(A) = λ ∈ [0, 1] and translate B perpendicular to H such that if
B̃ = B∩H+ and B̂ = B∩H−, then Vol(B̃)/Vol(B) = λ. For Ã, B̃, Â, B̂, the
total number of boxes is smaller than K. By induction hypothesis, we have

Vol(Ã+ B̃)
1
n ≥ Vol(Ã)

1
n + Vol(B̃)

1
n , Vol(Â+ B̂)

1
n ≥ Vol(Â)

1
n + Vol(B̂)

1
n .

14



Now, (Ã+ B̃)∪ (Â+ B̂) ⊆ A+B, where Ã+ B̃ ∈ H+ and Â+ B̂ ∈ H− are
disjoint. Hence, we get

Vol(A+B)1/n ≥
[
Vol(Ã+ B̃) + Vol(Â+ B̂)

]1/n

≥
[(

Vol(Ã)1/n + Vol(B̃)1/n
)n

+
(

Vol(Â)1/n + Vol(B̂)1/n
)n]1/n

=
[
λ
(
Vol(A)1/n + Vol(B)1/n

)n
+ (1− λ)

(
Vol(A)1/n + Vol(B)1/n

)n]1/n

= Vol(A)1/n + Vol(B)1/n.

Corollary 3. (Isoperimetric Theorem for Lebesgue Measure) Let Bn
2 := {x ∈

Rn : ‖x‖2 ≤ 1}. A ⊆ Rn is Borel and r > 0 such that Vol(rBn
2 )=Vol(A),

then
Vol(Aε) ≥ Vol((r + ε)Bn

2 ).

Proof. Aε = A+ εBn
2 . Applying Brunn-Minkowski Inequality, we get

Vol(Aε) ≥
(

Vol(A)
1
n + Vol(εBn

2 )
1
n

)n
=
(

Vol(rBn
2 )

1
n + Vol(εBn

2 )
1
n

)n
=
(

(r + ε)Vol(Bn
2 )

1
n

)n
= Vol((r + ε)Bn

2 ).

Lemma 6. The following two inequalities imply each other.
(i) ∀A,B 6= ∅ and A,B ⊆ Rn compact,

Vol(A+B)
1
n ≥ Vol(A)

1
n + Vol(B)

1
n .

(ii) ∀A,B ⊆ Rn compact and ∀λ ∈ [0, 1],

Vol(λA+ (1− λ)B) ≥ Vol(A)λVol(B)1−λ.

Proof. (i)⇒(ii). By (i) and concavity of log, we have

1

n
log(Vol(λA+ (1− λ)B)) ≥ log(λVol(A)

1
n + (1− λ)Vol(B)

1
n )

≥ λ

n
log Vol(A) +

1− λ
n

log Vol(B).

15



(ii)⇒(i). Define

Ã =
1

Vol(A)1/n
A, B̃ =

1

Vol(B)1/n
B and λ =

Vol(A)1/n

Vol(A)1/n + Vol(B)1/n
.

Then, by (ii), we get

λÃ+ (1− λ)B̃ = Vol

(
A+B

Vol(A)1/n + Vol(B)1/n

)
≥ Vol(Ã)λVol(B̃)1−λ = 1,

which implies that

Vol(A+B)
1
n ≥ Vol(A)

1
n + Vol(B)

1
n .

Definition 5. A measure µ on Rn is log-concave if ∀λ ∈ [0, 1], ∀A,B ⊆ Rn

compact,
µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

Example 1. If dµ = e−f(x)dx, where f(x) is convex, then, µ is log-concave.

Lemma 7. (Borell’s Lemma) Let µ be log-concave probability measure on Rn

and K ⊆ Rn closed, convex and centrally symmetric (i.e. x ∈ K ⇔ −x ∈ K)
and µ(K) = a. Then ∀r ≥ 1,

1− µ(rK) ≤ a

(
1− a
a

) r+1
2

.

Proof. For r ≥ 1 and any x ∈ K, y /∈ rK, if

r − 1

r + 1
x+

2

r + 1
y = z ∈ K,

then, since K is convex,

y =
r + 1

2r
(rz) +

r − 1

2r
(−rx) ∈ rK.

Contradiction. Hence,
r − 1

r + 1
x+

2

r + 1
y /∈ K.

16



Therefore, we have

2

r + 1
(Rn\(rK)) +

r − 1

r + 1
K ⊆ (Rn\K).

Hence, we get

1− a = 1− µ(K) ≥ µ

(
2

r + 1
(Rn\(rK)) +

r − 1

r + 1
K

)
≥ (1− µ(rK))

2
r+1µ(K)

r−1
r+1 = (1− µ(rK))

2
r+1a

r−1
r+1 .

Theorem 11. (Prékopa-Leindler Inequality) Let m, f, g : Rn → [0,∞) be
measurable functions and λ ∈ [0, 1]. Assume that for any x, y ∈ R,

m(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ.

Then, we have ∫
Rn
mdx ≥

(∫
Rn
fdx

)λ(∫
Rn
gdx

)1−λ

.

Remark 4. For A,B ⊆ Rn compact, let f = 1A, g = 1B and m = 1λA+(1−λ)B.
Then it is easy to check that

1λA+(1−λ)B ≥ 1λA11−λ
B ,

since it is trivial if x /∈ A or y /∈ B. If x ∈ A and y ∈ B, then λx+(1−λ)y ∈
λA+ (1−λ)B. Therefore, by Prékopa-Leindler Inequality and Lemma 6, we
proved the Brunn-Kinkowski Inequality

Vol(λA+ (1− λ)B) ≥ Vol(A)λVol(B)1−λ.

Proof of Prékopa-Leindler Inequality. We do induction on n. For n = 1,
we will first prove Brunn-Minkowski in dimension 1. A,B ⊆ R, compact,
measurable. For any ε > 0, there exists t ∈ A ∩B ⊆ R and a translation of
A such that

Vol(A ∩ [t,∞)) ≥ Vol(A)− ε > 0,Vol(B ∩ (−∞, t]) ≥ Vol(B)− ε > 0.

17



W.l.o.g., we can let t = 0, then, we get

Vol(A′) ≥ Vol(A)− ε,Vol(B′) ≥ Vol(B)− ε,

where A′ = A ∩ [0,∞) and B′ = B ∩ (−∞, t] and we have

A′ ∪B′ ⊆ A′ +B′,

where A′ and B′ are disjoint. Therefore, we get

Vol(A+B) = Vol(A′ +B′) ≥ Vol(A′) + Vol(B′) ≥ Vol(A) + Vol(B)− 2ε.

It is true for any ε > 0, thus Vol(A + B) ≥Vol(A)+Vol(B). Now, w.l.o.g.,
assume f and g to be bounded and ‖f‖∞ = ‖g‖∞ = 1 since otherwise we
can consider

f

‖f‖∞
,

g

‖g‖∞
and

m

‖f‖λ∞‖g‖1−λ
∞

.

Now, for t ∈ (0, 1), define

A = {x ∈ R : f(x) ≥ t}, B = {x ∈ R : g(x) ≥ t}, C = {x ∈ R : m(x) ≥ t}.

Since A,B 6= ∅, t < 1, ‖f‖∞ = ‖g‖∞ = 1, we have

Vol(λA+ (1− λ)B) ≥ Vol(A) + Vol(B).

Also, λA+ (1− λ)B ⊆ C, since for x ∈ A, y ∈ B, we have

m(λx+ (1− λ)y) ≥ f(x)λg(x)1−λ ≥ tλt1−λ = t.

Hence, we get

Vol(m ≥ t) ≥ λVol(f ≥ t) + (1− λ)Vol(g ≥ t).

Now, integrate w.r.t. t, we get∫
R
m =

∫ ∞
0

Vol(m ≥ t)dt ≥
∫ 1

0

Vol(m ≥ t)dt

≥ λ

∫ 1

0

Vol(f ≥ t)dt+ (1− λ)

∫ 1

0

Vol(g ≥ t)dt

= λ

∫
f + (1− λ)

∫
g ≥

(∫
f

)λ(∫
g

)1−λ

,
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where the last inequality above is obtained by AM-GM. Now, let’s do induc-
tion on dimension n. Suppose f, g,m : Rn → [0,∞), Rn = R× Rn−1, t ∈ R,
s ∈ Rn−1, and let

ft(s) = f(t, s), gt(s) = g(t, s),mt(s) = m(t, s).

Fix t0, t1 ∈ R, define t = λt0 + (1− λ)t1 for every u, v ∈ Rn,

mt(λu+ (1− λ)v) = m(t, λu+ (1− λ)v) = m(λ(t0, u) + (1− λ)(t1, v))

≥ f(t0, u)λg(t1, v)1−λ = ft0(u)λgt1(v)1−λ,

where ft0 , gt1 ,mt satisfy the induction hypothesis at n− 1. Thus,∫
Rn−1

mt(s)ds ≥
(∫

Rn−1

ft0(s)ds

)λ(∫
Rn−1

gt1(s)ds

)1−λ

Define

f̄(t) =

∫
Rn−1

ft(s)ds, ḡ(t) =

∫
Rn−1

gt(s)ds, m̄(t) =

∫
Rn−1

mt(s)ds.

For all t0, t1 ∈ R,

m̄(λt0 + (1− λ)t1) ≥ f̄(t0)λḡ(t1)1−λ.

m̄, f̄ , ḡ also satisfy the induction hypothesis at dimension 1. Thus,∫
Rn
m =

∫
R
m̄ ≥

(∫
R
f̄

)λ(∫
R
ḡ

)1−λ

≥
(∫

Rn
f

)λ(∫
Rn
g

)1−λ

.

Now, we’re going to state and prove Gromov-Milman Theorem. Before
we do that, let’s give the basic settings first. Let ‖ · ‖ be a norm on Rn.

B‖·‖ = K = {x ∈ Rn : ‖x‖ ≤ 1}

is the unit ball. Then, it is clear that K is convex and centrally symmetric.
Conversely, any convex centrally symmetric body is a unit ball of a norm.

Definition 6. A norm ‖ · ‖ is called uniformly convex if ∀ε > 0, ∃δ = δ(ε),
such that

∀x, y ∈ B‖·‖, ‖x− y‖ ≥ ε, then

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.
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Remark 5. On Rn, uniformly convexity is equivelant to strictly convexity
plus compactness.

Definition 7. The modulus of uniform convexity of ‖ · ‖ is

δ‖·‖(ε) := inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

Now, if ‖x‖2, ‖y‖2 ≤ 1 and ‖x− y‖2 = ε. Then

‖x+ y‖2
2 + ‖x− y‖2

2 = 2‖x‖2
2 + 2‖y‖2

2 ≤ 4,

which implies that ‖x+ y‖2
2 + ε2 ≤ 4. Hence∥∥∥∥x+ y

2

∥∥∥∥
2

≤
√

1− ε2

4
∼ 1− ε2

8
,

and

δ‖·‖2(ε) = 1−
√

1− ε2/4 ∼ ε2

8
.

For every norm ‖ · ‖, δ‖·‖(ε) ≤ 1−
√

1− ε2/4.

δ‖·‖p(ε) ∼

{
p−1

8
ε2 + o(ε2) 1 ≤ p < 2

Cpε
p + o(εp) p > 2

Let ‖ · ‖ be a norm on Rn. δ(ε) = δ‖·‖(ε). K = {x ∈ Rn : ‖x‖ ≤ 1}. ν is a
Borel probability measure such that

ν(A) :=
Vol(A ∩K)

Vol(K)
.

µ is a Borel probability measure on ∂K = S (cone measure),

∀A ⊆ S, µ(A) :=
Vol([0, 1]A)

Vol(K)
:=

Vol(∪0≤t≤1{ta : a ∈ A})
Vol(K)

.

Theorem 12. (Gromov-Milman Theorem)
(i) ∀A ⊆ K, the unit ball, and ∀ε > 0, we have

ν(Aε) ≥ 1− 1

ν(A)
e−2δ(ε)n,
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where Aε = {x ∈ Rn, x ∈ K : ∃y ∈ A, ‖x− y‖ ≤ ε}.
(ii) ∀A ⊆ S := ∂K, we have

µ(Aε) ≥ 1− 4

µ(A)
e−2δ(ε/2)n,

where Aε = {x ∈ Rn, x ∈ S : ∃y ∈ A, ‖x− y‖ ≤ ε}.

Proof. (i) For A ⊆ K, B = K\Aε, if x ∈ A, y ∈ B and ‖x − y‖ ≥ ε, then,
by definition of δ(ε), we have ‖(x + y)/2‖ ≤ 1 − δ(ε), which implies that
(A+B)/2 ⊆ (1− δ(ε))K. Hence, by Brunn-Minkowski Inequality, we get

ν(A)1/2ν(B)1/2 ≤ ν

(
A+B

2

)
≤ (1− δ(ε))n ≤ e−nδ(ε).

Hence, we have

1− ν(Aε) = ν(B) ≤ 1

ν(A)
e−2nδ(ε).

(ii) A ⊆ S, Ã = [1/2, 1]A, B = S\Aε and B̃ = [1/2, 1]B. For x ∈ Ã,
y ∈ B̃, it is not hard to show that ‖x−y‖ ≥ ε/2. Then we have ‖(x+y)/2‖ ≤
1−δ(ε/2), which implies that (Ã+ B̃)/2 ⊆ (1−δ(ε/2))K. Hence, by Brunn-
Minkowski Inequality, we get

ν(Ã)1/2ν(B̃)1/2 ≤ ν

(
Ã+ B̃

2

)
≤ (1− δ(ε/2))n ≤ e−nδ(ε/2).

Notice that

[0, 1]A\Ã = K\[1/2, 1]A = [0, 1/2]A =
1

2
[0, 1]A.

Hence,

ν([0, 1]A) ≥ ν(Ã) ≥
(

1− 1

2n

)
ν([0, 1]A).

Now, we will discuss Martingale Method in concentration of measure. Let
(Ω,F ,P) be a probability space.
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Lemma 8. Let {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F be a filtration. And f0 =
Ef0, f1, f2, . . . , fn = f is a Martingale w.r.t. this filtration. For 1 ≤ i ≤ n,
define the Martingale difference as di = fi − fi−1. Then, we have

P(|f − Ef | ≥ t) ≤ 2e
− t2

4
Pn
i=1
‖di‖2∞ .

Proof. Notice that ∀x ∈ R, ex ≤ x+ ex
2
. Therefore, ∀λ ∈ R,

eλdi ≤ λdi + eλ
2d2i .

Hence, we get

E[eλdi |Fi−1] ≤ λE[di|Fi−1] + E[eλ
2d2i |Fi−1] = E[eλ

2d2i |Fi−1] ≤ eλ
2‖di‖2∞ .

Therefore, we get

Eeλ(f−Ef) = E

[
n∏
i=1

eλdi

]
= E

[
E

(
n∏
i=1

eλdi |Fn−1

)]

= E

[
n−1∏
i=1

eλdiE(eλdn|Fn−1)

]
≤ eλ‖di‖

2
∞E

(
n−1∏
i=1

eλdi

)
≤ · · · ≤ eλ

2
Pn
i=1 ‖di‖2∞ .

Thus, by Markov’s Inequality, ∀λ > 0, we have

P(f − Ef ≥ t) ≤ e−λtEeλ(f−Ef) ≤ e−λt+λ
2
Pn
i=1 ‖di‖2∞ .

Now, minimizing the RHS in λ, and consider P(f − Ef ≤ −t) similarly, we
will get our desired result.

Remark 6. Indeed, a stronger inequality is known. For M = max1≤i≤n ‖di‖∞
and σ2 = ‖

∑n
i=1 E(d2|Fi−1)‖∞, we have

P(|f − Ef | ≥ t) ≤ 2e−
Ct
M

sinh−1(tM/σ2).

Definition 8. Let Sn be the permutation group of {1, 2, . . . , n}. We define
a metric d on Sn as

d(π, τ) :=
1

n
{1 ≤ i ≤ n : π(i) 6= τ(i)}.

Define the uniform measure µ on Sn as

∀A ⊆ Sn, µ(A) =
|A|
n!
.
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Theorem 13. (Maurey) If f : Sn → R is Lipschitz with constant L, then,

µ(π ∈ Sn : |f(π)− Ef | ≥ t) ≤ 2e−
t2n
16L2 .

Proof. Fix k ∈ {1, 2, . . . , n}, for any distinct indices ii, . . . , ik ∈ {1, 2, . . . , n},
define

Ai1,...,ik := {π ∈ Sn : π(1) = i1, . . . , π(k) = ik},

which forms a partition of Sn. Let Fk = σ(Ai1,...,ik : i1, . . . , ik). Take i1, . . . , ik
distinct and A = Ai1,...,ik an atom of Fk and let

B = Ai1,...,ik,r ∈ Fk+1, C = Ai1,...,ik,s ∈ Fk+1.

B, C are atoms of Fk+1. If π ∈ B, |B| = |C|, then (r, s)π ∈ C. Thus, we get

E(f |Fk+1)|B − E(f |Fk+1)|C =
1

|B|
∑
π∈B

f(π)− 1

|C|
∑
π∈C

f(π)

=
1

|B|
∑
π∈B

(f(π)− f((r, s)π)).

Therefore, we have∣∣∣∣E(f |Fk+1)|B − E(f |Fk+1)|C
∣∣∣∣ ≤ 1

|B|
∑
π∈B

Ld(π, (r, s)π) ≤ 2L

n
.

Now, let fk = E(f |Fk) and dk+1 = fk+1 − fk. If B ∈ Fk+1 is an atom,
then there exists a unique A ∈ Fk which is an atom such that B ⊆ A. Let
N = #{C ⊆ A : atoms of Fk+1}. Then, we have∣∣∣∣dk+1|B

∣∣∣∣ =

∣∣∣∣E(f |Fk+1)|B −
1

N

∑
C⊆A: atoms of Fk+1

E(f |Fk+1)|C
∣∣∣∣

≤ 1

N

∑
C⊆A: atoms of Fk+1

∣∣∣∣E(f |Fk+1)|B − E(f |Fk+1)|C
∣∣∣∣ ≤ 2L

n
.

By Lemma 8, we have

µ(π ∈ Sn : |f(π)− Ef | ≥ t) ≤ 2e
− t2

4n·4L2/n2 = 2e−
t2n
16L2 .
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Now, let G be a finite group and µ is the uniform measure on it.

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn = {e}.

d is an invariant metric on G and the quotient metric on G/Gi is given by

ρ(Gix,Giy) = min{d(a, b) : a ∈ Gix, b ∈ Giy} = d(xy−1, Gi).

We can check that since d is an invariant measure, ρ is also a metric. Let
ai = diam(Gi/Gi+1), then the “length” of G0 ⊇ · · · ⊇ Gn is l =

√∑n
i=1 a

2
i .

Theorem 14. (Schechtman) If f : G→ R is Lipschitz with constant L w.r.t.
metric d, then,

µ(|f − Ef | ≥ t) ≤ 2e−
t2

4L2 .

Remark 7. The case G = Sn gives us the Maurey Theorem.

Theorem 15. (Talagrand) Let (Ω,F , µ) be a probability space. For any
n ∈ N, define the probability space (Ωn,F⊗n, µ⊗n) and let Pn = µ⊗n. Define
the metric d as

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = #{1 ≤ i ≤ n : xi 6= yi}.

Then, ∀A ⊆ Ωn, we have

EPne
td(x,A) ≤ 1

Pn(A)

(
1

2
+
et + e−t

4

)n
≤ 1

Pn(A)
et

2n/4.

Remark 8. ∀f : Ωn → R Lipschitz with constant 1/n,

Pn(x ∈ Ωn : |f(x)− EPnf | ≥ t) ≤ 4e−
t2n
16 .

We need to following Lemma to prove Talagrand’s Theorem.

Lemma 9. If g : Ω→ [0, 1] is measurable, then,∫
Ω

min

{
et,

1

g(ω)

}
dµ(ω) ·

∫
Ω

g(ω)dµ(ω) ≤ 1

2
+
et + e−t

4
.
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Proof of Talagrand’s Theorem. We do induction on n and use the Lemma
above in our proof. For n = 1, we have∫

etd(x,A)dµ(x) =

∫
Ω

(1A + et1Ω\Adµ =

∫
Ω

min

{
et,

1

1A

}
dµ

≤ 1∫
Ω

1Adµ
·
(

1

2
+
et + e−t

4

)
=

1

µ(A)

(
1

2
+
et + e−t

4

)
.

Assuming the case n is true, let’s prove that the case n+ 1 holds as well. For
A ⊆ Ωn+1 = Ωn × Ω and ω ∈ Ω, define

A(ω) := {x ∈ Ωn : (x, ω) ∈ A}, B =
⋃
ω∈Ω

A(ω).

It is not hard to see that
(i) If A(ω) 6= ∅, then d(A, (x, ω)) = d(A(ω), x).
(ii) d(A, (x, ω)) ≤ 1 + d(B, x).
Now, we get∫
Ωn+1

etd(A,x)dPn+1(x) =

∫
Ω

∫
Ωn
etd(A,(x,ω))dPn(x)dµ(ω)

≤
∫

Ω

(∫
Ωn

min{etd(A(ω),x), et · etd(B,x)}dPn(x)

)
dµ(ω)

≤
∫

Ω

min

{∫
Ωn
etd(A(ω),x)dPn(x), et

∫
Ωn
etd(B,x)dPn(x)

}
dµ(ω)

≤
∫

Ω

min

{
1

Pn(A(ω))

(
1

2
+
et + e−t

4

)n
,

et

Pn(B)

(
1

2
+
et + e−t

4

)n}
dµ(ω)

=

(
1

2
+
et + e−t

4

)n
1

Pn(B)

∫
Ω

min

{
et,

1

P(A(ω))/Pn(B)

}
dµ(ω)

=

(
1

2
+
et + e−t

4

)n+1
1

Pn(B) · Pn+1(A)
Pn(B)

=
1

Pn+1(A)

(
1

2
+
et + e−t

4

)n+1

.

Let X1, X2, . . . , Xn be normed spaces, with norms ‖ · ‖Xi , 1 ≤ i ≤ n. For
Ωi ⊆ Xi, let µi be probability measures on Ωi such that diam(Ωi) ≤ 1 for all
i. Define

(Ω,Pn) = (Ω1 × · · · × Ωn, µ1 × · · · × µn),
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and

d((x1, y2, · · · , xn), (y1, y2, · · · , yn)) =

(
n∑
i=1

‖xi − yi‖2
Xi

)1/2

.

Also, define conv(Ω) as the convex hull of Ω. Under these assumptions, we
have the following Theorem.

Theorem 16. (Concentration for Convex Functions) If g : conv(Ω)→ R is
a convex function and is Lipschitz with constant 1, then,

Pn(|g −M | ≥ t) ≤ 4e−t
2/4,

where M is a median of g w.r.t. Pn.

Proof. Let A = {x ∈ Ω : g(x) ≤M}, then, Pn(A) ≥ 1/2. We claim that

{x ∈ Ω : g(x) ≥M + t} ⊆ {x ∈ Ω : d(x, conv(A)) ≥ t}.

Because if d(x, conv(A)) < t, then ∃y1, . . . , yk ∈ A, λi ≥ 0,
∑k

i=1 λi = 1 such
that

d

(
x,

k∑
i=1

λiyi

)
< t.

Now, g is Lipschitz with constant 1, so we have

g(x) ≤ t+ g

(
k∑
i=1

λiyi

)
≤ t+

k∑
i=1

λig(yi) ≤ t+
k∑
i=1

λiM = t+M.

By (ii) of Talagrand’s Convex Hull Theorem which I will state and prove
later, we get

Pn(g(x) ≥M + t) ≤ 1

Pn(A)
e−t

2/4 ≤ 2e−t
2/4.

Now, define B = {x ∈ Ω : g(x) ≤M − t}, similarly, we have

{x : g(x) ≥M} ⊆ {x : d(x, conv(B)) ≥ t},

and
1

2
≤ Pn(g ≥M) ≤ 1

Pn(B)
e−t

2/4,

which implies that Pn(B) ≤ 2e−t
2/4. Therefore, we conclude that

Pn(|g −M | ≥ t) ≤ 4e−t
2/4.
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Remark 9. We need the convexity assumption on g to get dimension inde-
pendent concentration.

Example 2. Ωi = {0, 1} ⊆ [0, 1] and Ω = {0, 1}n. d is the Euclidean metric
and here n is even. Define

A =

{
(x1, x2, . . . , xn) ∈ {0, 1}n :

n∑
i=1

xi ≤
n

2

}
,

and g : {0, 1}n → R such that

g(x) = d(x,A).

Then, g is Lipschitz with constant 1. Take (x1, . . . , xn) ∈ {0, 1}n such that∑n
i=1(2xi − 1) ≥ ρ

√
n for some ρ > 0. Then, for every y ∈ A,

n∑
i=1

(xi − yi)2 ≥
n∑
i=1

(xi − yi) ≥
n+ ρ

√
n

2
− n

2
=
ρ

2

√
n,

which implies that ‖x − y‖2 ≥
√
ρ/2n1/4. Since it is true for every y ∈ A,

we get

g(x) = d(x,A) ≥
√
ρ

2
n1/4.

Since {
x ∈ {0, 1}n : g(x) ≥

√
ρ

2
n1/4

}
⊇

{
x :

n∑
i=1

(2xi − 1) ≥ ρ
√
n

}
,

we have

Pn
(
g(x) ≥

√
ρ

2
n1/4

)
≥ Pn

(
n∑
i=1

(2xi − 1) ≥ ρ
√
n

)
→ C(ρ) as n→∞.

Therefore, there is no dimension-free concentration.

Theorem 17. (Talagrand’s Convex Hull Theorem)
∀A ⊆ Ω, define f(x,A) = d(x, conv(A)), then
(i) ∫

Ω

e
1
4
f(x,A)2dPn(X) ≤ 1

Pn(A)
.

(ii)

Pn(f(x,A) ≥ t) ≤ 1

Pn(A)
e−t

2/4.
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We will need the following Numerical Lemma to prove Talagrand’s Con-
vex Hull Theorem.

Lemma 10. (Numerical Lemma) ∀r ∈ [0, 1], ∃λ = λ(r) ∈ [0, 1], such that

r−λe
(1−λ)2

4 ≤ 2− r.

Proof. Set f(λ) = r−λ exp[(1− λ)2/4]. Then,

f ′(λ) =

(
log

(
1

r

)
− 1− λ

2

)
e−

(1−λ)2

4 r−λ = 0,

when λ = 1 + 2 log r < 1. So the best λ for our Lemma is

λ = max{0, 1 + 2 log r}.

(Case 1: λ = 0). Then, 1 + 2 log r ≤ 0, so r ≤ e−1/2. It is easy to check
that

e1/4 ≤ 2− r ≤ 2− e−1/2.

(Case 2: λ > 0). Then, r > e−1/2. We need to have

2− r ≥ r−1−2 log re(log r)2 ,

i.e. log(2 − r) ≥ −(1 + 2 log r) log r + (log r)2 = − log r − (log r)2. So, we
need to show that

f(r) := log(2− r) + (log r)2 + log r ≥ 0, 0 ≤ r ≤ 1.

Notice that

f ′(r) =
−1

2− r
+

2 log r

r
+

1

r
,

and f(1) = 0. So, it suffices to check f ′(r) ≤ 0 for 0 ≤ r ≤ 1.

Proof of Talagrand’s Convex Hull Theorem. (ii) can be obtained from (i) by
applying Markov’s Inequality. Therefore, we only need to prove (i). We do
induction on n. For n = 1, if x ∈ A, then f(x,A) = 0 and if x /∈ A, then
f(x,A) ≤ 1. Therefore∫

Ωi

e
1
4
f(x,A)2dµi(x) ≤ µi(A) + e1/4(1− µi(A)).
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Denoting λ = µi(A), we need λ+ (1− λ)e1/4 ≤ 1/λ, i.e.,

ψ(λ) := λ2 + λ(1− λ)e1/4 ≤ 1.

This is true since ψ(1) = 1 and

ψ′(λ) = 2λ+ (1− 2λ)e1/4 ≥ 2λ(1− e1/4) + e1/4

≥ 2(1− e1/4) + e1/4 = 2− e1/4 ≥ 0.

Now, assuming the case n and we will try to show the case n + 1. For
A ⊆ Ω× Ωn+1 and for every ω ∈ Ωn+1, let

A(ω) = {y ∈ Ω : (y, ω) ∈ A}, B =
⋃

ω∈Ωn+1

A(ω).

Claim: Fix z = (y, ω) ∈ Ω× Ωn+1, then, for every λ ∈ [0, 1],

f(z, A)2 ≤ λf(y, A(ω))2 + (1− λ)f(y,B)2 + (1− λ)2.

Let’s prove the Claim first. Take x ∈ conv(A(ω)), for which

f(y, A(ω))2 = ‖y − x‖2 =
n∑
i=1

‖yi − xi‖2
Xi
.

Take u ∈ conv(B), for which

f(y,B) = ‖y − u‖2 =
n∑
i=1

‖yi − ui‖2
Xi
.

For any (x, ω) ∈ conv(A), there exist some v1, . . . , vm ∈ A(ω), λi ≥ 0,∑m
i=1 λi =, such that x =

∑m
i=1 λivi.

(x, ω) =
m∑
i=1

λi(vi, ω) ∈ conv(A).

∃ω′ ∈ conv(Ωn+1), (u, ω′) ∈ conv(A). u =
∑m

i=1 vi, vi ∈ B, ∃ωi ∈ Ωn+1,
ω′ =

∑m
i=1 λiωi ∈ conv(Ωn+1), (vi, ωi) ∈ A. Now, we have

f(z, A)2 ≤ d(z, λ(z, ω) + (1− λ)(u, ω′))2

= d(y, λx+ (1− λ)u)2 + ‖ω − λω − (1− λ)ω′‖2
Xn+1

≤ (λ‖y − x‖+ (1− λ)‖y − u‖)2 + (1− λ)2‖ω − ω′‖Xn+1

≤ λ|y − x‖2 + (1− λ)‖y − u‖2 + (1− λ)2

= λf(y, A(ω))2 + (1− λ)f(y,B)2 + (1− λ)2,
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which proves the Claim.
Fix ω ∈ Ωn+1 and λ ∈ [0, 1]. We get∫

Ω

e
1
4
f((y,ω),A)2dPn(y) ≤

∫
Ω

e
1
4

(λf(y,A(ω))2+(1−λ)f(y,B)2+(1−λ)2)dPn(y)

= e
(1−λ)2

4

∫
Ω

(
e

1
4
f(y,A(ω))2

)λ(
e
f(y,B)2

4

)1−λ

dPn

≤ e
(1−λ)2

4

(∫
Ω

e
1
4
f(y,A(ω))2dPn(y)

)λ(∫
Ω

e
f(y,B)2

4 dPn(y)

)1−λ

≤ e
(1−λ)2

4
1

Pn(A(ω))λ
· 1

Pn(B)1−λ = Pn(B)−1

(
Pn(A(ω))

Pn(B)

)−λ
e(1−λ)2/4.

Now, apply Numerical Lemma with r = Pn(A(ω))/Pn(B) ≤ 1, we can find
some λ = λ(ω), such that∫

Ω

e
1
4
f((y,ω),A)2dPn(y) ≤ Pn(B)−1

(
2− Pn(A(ω))

Pn(B)

)
.

Finally, integrating over ω ∈ Ωn+1, we get∫
Ω×Ωn+1

e
1
4
f(z,A)2dPn+1(z) ≤ 1

Pn(B)

(
2− Pn+1(A)

Pn(B)

)
=

1

Pn+1(A)
· Pn+1(A)

Pn(B)

(
2− Pn+1(A)

Pn(B)

)
≤ 1

Pn+1(A)
.

Next, we introduce the Khintchine Inequality, is a theorem from proba-
bility, and is also frequently used in analysis. Heuristically, it says that if we
pick n real numbers a1, . . . , an, and add them together each multiplied by a
random sign ±1, then the expected value of the modulus, or the modulus it
will be closest to on average, will be not too far off from

√
|a1|2 + · · ·+ |an|2

Theorem 18. (Khintchine’s Inequality) Let ξi, be i.i.d. random variables
such that P(ξi = 1) = P(ξi = −1) = 1/2. Then, for all 1 ≤ p < ∞, ∃Ap, Bp

such that for all n, ∀a1, . . . , anR, we have

Ap

(
n∑
i=1

a2
i

)1/2

≤

(
Eξ∈{±1}n

∣∣∣∣∣
n∑
i=1

ξiai

∣∣∣∣∣
p)1/p

≤ Bp

(
n∑
i=1

a2
i

)1/2

,

where Bp = O(
√
p).
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Proof. Notice first that (
∑n

i=1 a
2
i )

1/2 =
√

E|
∑n

i=1 aiξi|2. Let X =
∑n

i=1 aiξi.

By the simple fact that 1
2
(et + e−t) ≤ et

2/2, we get

EeλX =
n∏
i=1

eλai + e−λai

2
≤

n∏
i=1

eλ
2a2
i /2 = e

λ2

2

Pn
i=1 a

2
i .

W.l.o.g., we assume
∑n

i=1 a
2
i = 1. Thus, EeλX ≤ eλ

2/2. Now by the usual
argument, i.e., applying Markov’s Inequality and optimizing over λ, we get

P(|X| ≥ t) ≤ 2e−t
2/2.

Therefore, we have

E|X|p =

∫ ∞
0

ptp−1P(|X| ≥ t)dt ≤
∫ ∞

0

2ptp−1e−t
2/2dt ≤ (Cp)p/2.

Hence, for Bp = O(
√
p), we have(

Eξ∈{±1}n

∣∣∣∣∣
n∑
i=1

ξiai

∣∣∣∣∣
p)1/p

≤ Bp

(
n∑
i=1

a2
i

)1/2

.

Now, if p ≥ 2, we obtain lower bound with Ap = 1 by Jensen’s Inequality. If
1 ≤ p < 2, define θ ∈ [0, 1] by 1

2
= θ

p
+ 1−θ

4
. Applying Hölder’s Inequality, we

get (
n∑
i=1

a2
i

)1/2

= ‖X‖2 ≤ ‖X‖θp‖X‖1−θ
4 ≤ ‖X‖θpB1−θ

4 ‖X‖1−θ
2 .

Thus, ‖X‖2 ≤ B
1−θ
θ

4 ‖X‖p.

Theorem 19. (Kahane’s Inequality) Let ξi, be i.i.d. random variables such
that P(ξi = 1) = P(ξi = −1) = 1/2. Then, for all 1 ≤ p < ∞, ∃Ap, Bp =
O(
√
p) such that for any normed space X, any n ∈ N, any x1, . . . , xn ∈ X,

we have

ApE‖
n∑
i=1

ξixi‖ ≤

(
E‖

n∑
i=1

ξixi‖p
)1/p

≤ BpE‖
n∑
i=1

ξixi‖.
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Proof. We only prove the upper bound here. Ωi = {−1, 1} with uniform
measure. f : Rn → R,

f(a1, . . . , an) = ‖
n∑
i=1

aixi‖,

and f is convex. Define

σ = sup
x∗∈X∗,‖x∗‖=1

(
n∑
i=1

x∗(xi)
2

)1/2

.

Claim: σ = ‖f‖Lip.
Now, let’s prove the Claim. Notice that

‖f‖Lip = sup
a∈Sn−1

‖
n∑
i=1

aixi‖ = sup
a∈Sn−1

sup
‖x∗‖=1

x∗

(
n∑
i=1

aixi

)

= sup
‖x∗‖=1

sup
a∈Sn−1

n∑
i=1

aix
∗(xi) = sup

‖x∗‖=1

(
n∑
i=1

x∗(xi)
2

)1/2

= σ.

Let M be a median of f on {±1}n. Theorem 16 implies that

P(|f −M | ≥ t) ≤ 4e−
t2

16σ2 .

Hence, we get

E‖
n∑
i=1

ξixi‖p =

∫ ∞
0

ptp−1P(f ≥ t)dt

≤
∫ 2M

0

ptp−1dt+

∫ ∞
2M

ptp−1e−
(t−M)2

16σ2 dt ≤ (CM)p + (Cσ
√
p)p.

Corollary 4. (Eξ‖
∑n

i=1 ξixi‖p)1/p ≤ C(M + σ
√
p), where M is a median of

‖
∑n

i=1 ξixi‖ and σ = sup‖x∗‖=1(
∑n

i=1 x
∗(xi)

2)1/2.

Next, we will discuss spectral methods. Let (Ω,F,P) be a probability
space. A is a set of measurable function. E : A → R+, where E is the
energy functional. A key example is (X, d, µ) where d is a metric, µ a Borel
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probability measure, for f : X → R, define the “abstract length of the
gradient of f at x ∈ X” as

|∇f |(x) = lim sup
y→x

|f(y)− f(x)|
d(y, x)

≤ ‖f‖Lip,

if f is Lipschitz. Let A = {f : X → R Lipschitz} and

E(f) =

∫
X

|∇f |(x)2dµ(x).

Definition 9. (i) f : X → R,

σ2
µ(f) := E(f − Ef)2 = Ef 2 − (Ef)2.

(ii) f : X → R+,

Entµ(f) := E(f log f)− (Ef) log(Ef).

Definition 10. The pair (A, E) satisfies the Poincaré Inequality with con-
stant C if

∀f ∈ A, σ2(f) ≤ CE(f).

Definition 11. The pair (A, E) satisfies the log-Sobolev Inquality with con-
stant C if

∀f ∈ A, Ent(f 2) ≤ CE(f).

Example 3. Here’s an example of Poincaré Inequality. If (X, g) is Rieman-
nian manifold and here

E(g) =

∫
|∇g|2dµ,

where µ is the normalized Riemannian volume. Then we have Poincaré In-
equality with constant C = 1/λ1, where λ1 is the first eigenvalue of Laplacian.

Proposition 3. (i) σ2(λf) = λ2σ2(f).
(ii) Ent(λf) = λEnt(f), for λ ≥ 0, f ≥ 0.
(iii) Ent(f) ≥ 0.

Proof. (i) σ2(λf) = E(λf − Eλf)2 = λ2σ2(f).
(ii) We do the following computations.

Ent(λf) = E[λf log(λf)]− E(λf) log Eλf
= λE(f log f) + λ log λEf − λEf log Ef − λ log λEf = λEnt(f).
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(iii) ψ(x) := x log x is convex. So, Jensen’s Inequality implies that

Eψ(f)− ψ(Ef) = Ent(f) ≥ 0.

Lemma 11. Given Φ : R→ R a C1 function, (X, d, µ) a probability metric
space and f : X → R Lipschitz, then, we have

E(Φ ◦ f) ≤ ‖f‖2
Lip

∫
X

|Φ′(f(x))|2dµ(x).

Proof. For any x ∈ X, we have

|∇Φ ◦ f |(x) = lim sup
y→x

|Φ(f(y))− Φ(f(x))|
d(y, x)

= lim sup
y→x

|Φ(f(y))− Φ(f(x))|
|f(y)− f(x)|

· |f(y)− f(x)|
d(y, x)

≤ ‖f‖Lip|Φ′(f(x))|.

Hence, we get

E(Φ ◦ f) =

∫
X

|∇Φ ◦ f |2dµ ≤ ‖f‖2
Lip

∫
X

|Φ′(f(x))|2dµ(x).

Theorem 20. (Gromov-Milman) (Ω,P, d) is a metric probability space. A =
{bounded Lipschitz functions}. And (A, E) satisfies the Poincaré Inequality
with constant C. Then, for any |lambda| ≤ 2/

√
C, and any f : Ω → R

Lipschitz with constant 1, we have
(i) E[eλ(f−Ef)] ≤ 240/(4− Cλ2).
(ii) ∀t > 0, we have the exponential concentration

P(|f − Ef | > t) ≤ 240e−
√

2
C
·t.

Proof. (i) Using the Poincaré Inequality with the function e
λ
2
f and applying

Lemma 11 with Φ(x) = ex, we get

Eeλf − (Ee
λ
2
f )2 = σ2(e

λ
2
f ) ≤ CE(e

λ
2
f ) ≤ C

λ2

4
Eeλf .
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Hence, we get

Eeλf ≤ 1

1− Cλ2

4

(
Ee

λ
2
f
)2

≤ 1

1− Cλ2

4

(
1

1− Cλ2

16

)2 (
Ee

λ
4
f
)4

≤ · · · ≤

 m∏
k=1

(
1

1− Cλ2

4k

)2k−1
 · (Ee

λ
2m

f
)2m

.

And notice that(
Ee

λ
2m

f
)2m

=

(
E
(

1 +
λ

2m
f + o

(
1

2m

)))2m

→ eλEf ,

as m→∞ and

≤ · · · ≤

 ∞∏
k=1

(
1

1− Cλ2

4k

)2k−1
 ≤ 240

4− Cλ2
.

Therefore, we have

E[eλ(f−Ef)] ≤ 240

4− Cλ2
.

(ii) By (i), for any λ > 0, we have

P(|f − Ef | > t) ≤
(
Eeλ|f−Ef |) e−λt ≤ 240

4− Cλ2
e−λt.

So taking λ =
√

2/C, we get (ii).

Remark 10. Same holds for f to be Lipschitz (not necessarily bounded). For
example, we can truncate f by considering

fM :=


f |f | ≤M

M f > M

−M f < −M

Theorem 21. (Herbst’s Theorem) (Ω,P, d) is a metric probability space and
A = {bounded Lipschitz functions} and (A, E) satisfies log-Sobolev Inequality
with constant C. Then for every function f : Ω→ R Lipschitz with constant
1, we have for any λ ∈ R,

Eeλ(f−Ef) ≤ eCλ
2/4, P(|f − Ef | > t) ≤ 2e−t

2/C .
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Proof. Applying log-Sobolev Inequality to the function eλf/2 and applying
Lemma 11 with Φ(x) = ex, we get

Ent((e
λf
2 )2) = Ent(eλf ) = Eeλfλf − (Eeλf ) log(Eeλf )

≤ CE(eλf/2) ≤ C
λ2

4
E(eλf ).

Therefore, we have

E(eλfλf)− E(eλf ) log(Eeλf ) ≤ C
λ2

4
E(eλf ).

Define h(λ) = E(eλf ). Then, h′(λ) = E(feλf ) and

λh′(λ)− h(λ) log h(λ) ≤ C
λ2

4
h(λ),

which implies ( 1
λ

log h(λ))′ ≤ C/4. Hence

lim
λ→0

1

λ
log h(λ) = lim

λ→0

h′(λ)

h(λ)
= lim

λ→0

Eeλff
Eλf

= Ef.

Hence, we have
1

λ
log h(λ) ≤ Ef +

C

4
λ.

Thus,

Eeλf = h(λ) ≤ eλEfe
C
4
λ2 ⇒ Eeλ(f−Ef) ≤ e

C
4
λ2

.

Remark 11. Same holds for f to be Lipschitz (not necessarily bounded) by
truncation.

Now we consider the product spaces and Poincaré Inequality and log-
Sobolev Inequality tensorize.

Ω = Ω1 × · · · × Ωn, µ = µ1 × · · · × µn.

f : Ω→ R. Fix i and x1, . . . , xi−1, xi+1, . . . , xn ∈
∏

j 6=i Ωj.

f
x1,...,xi−1,xi+1,...,xn
i : Ωi → R, f

x1,...,xi−1,xi+1,...,xn
i = f(x1, . . . , xn).
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Proposition 4.

Entµ(f) ≤
n∑
i=1

Eµ (Entµi(f
x1,...,xi−1,xi+1,...,xn
i )) .

Remark 12. We also have

σ2
µ(f) ≤

n∑
i=1

Eµ

(
σ2
µi

(f
x1,...,xi−1,xi+1,...,xn
i )

)
.

By Proposition 4, we get the following Corollary.

Corollary 5. If each Ωi satisfies log-Sobolev Inequality with constant C, Ai
with energy Ei and

A = {f : Ω→ R : fi ∈ Ai}, E(f) =
n∑
i=1

EµEi(fi),

then, (Ω, E , A) satisfies log-Sobolev Inequality with the same constant C.

Before we prove Proposition 4, we recall the famous Young’s Inequality.

Lemma 12. (Young’s Inequality) p : R+ → R+ increasing and p(0) = 0,
q = p−1, i.e. q is the inverse function of p. Then

∀u, v ∈ R+, uv ≤
∫ u

0

p(s)ds+

∫ v

0

q(t)dt.

Now, we prove the following Lemma which will be used to prove Propo-
sition 4.

Lemma 13.

∀f ∈ Ω→ R+, Ent(f) = sup{E(fg) : Eeg ≤ 1}.

Proof. Let p(t) = log(t+ 1) and q(t) = et − 1. Then, by Young’s Inequality,

uv ≤ (u+ 1) log(u+ 1)− u+ ev − 1− v.

Now, let x = u+ 1 and y = v, we get

∀x, y ≥ 0, xy ≤ x log x− x+ ey.

Hence, fg ≤ f log f − f + eg. Normalize Ef = 1 and assume Eeg ≤ 1, we get

Efg ≤ Ef log f = Entf.

Taking g = log f , we finish the proof.
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Proof of Proposition 4. f : Ω1 × · · · × Ωn := Ω → R+. g : Ω → R such that
Eeg ≤ 1.

gi(x1, . . . , xn) = log

(∫
eg(x1,...,xn)dµ1(x1) · · · dµi−1(xi−1)∫
eg(x1,...,xn)dµ1(x1) · · · dµi(xi)

)
depends only on (xi, . . . , xn). We have∑

gi = log
eg

Eeg
≥ g ⇒ g ≤

∑
gi,

and Eµie
(gi)i = 1. Hence,

E(fg) ≤
∑
i

Efgi =
∑
i

Eµ(Eµifi(g
i)i) ≤

∑
i

EµEnt(fi).

Now, by Lemma 13, we complete the proof.

A key example for Poincaré’s Inequality is for µ the measure on R, such
that dµ(t) = 1

2
e−|t|dt. We have the following Lemma.

Lemma 14. µ is a measure on R such that dµ(t) = 1
2
e−|t|dt. Then, for every

Lipschitz function f : R→ R, we have

σ2
µ(f) ≤ 4

∫
R
(f ′)2dµ.

Proof. Standard approximation tells us that it is enough to deal with f ∈ C1

bounded. Now, for any φ : R→ R smooth, we have

Eµ(φ) =
1

2

∫ ∞
−∞

φ(t)e−|t|dt

= φ(0) +
1

2

∫ ∞
−∞

φ′(t)sgn(t)e−|t|dt,

by integration by parts. If we choose φ(t) = (f(t)− f(0))2, then we get

Eµ(f(t)− f(0))2 = 2

∫ ∞
−∞

(f(t)− f(0))f ′(t)sgn(t)
e−|t|

2
dt

≤ 2
(
Eµ(f − f(0))2

)1/2 (Eµ(f ′)2
)1/2

.

But we know that Eµ(f(t)− Eµ(f))2 ≤ Eµ(f(t)− f(0))2, hence

Eµ(f − Eµf)2 ≤ 4Eµ(f ′)2.
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Corollary 6. (Tensorization) For x ∈ Rn, we have exponential measure on
Rn as

dµ(x) =
1

2n
e−‖x‖1dx.

Then, for any f : Rn → R Lipschitz, we have

σµ(f) ≤ 4

∫
Rn
‖∇f‖2

2dµ.

Furthermore, by Gromov-Milman, if f : Rn → R is 1-Lipschitz, i.e.

|f(x)− f(y)| ≤ ‖x− y‖2,

then, µ(|f − Eµf | ≥ t) ≤ Ce−Ct.

Lemma 15. (X, d) is a metric space. A ⊆ X and f : A→ R is 1-Lipschitz,
i.e.

|f(x)− f(y)| ≤ d(x, y) ∀x, y ∈ A,

then, ∃F : X → R, such that F |A = f and ‖F‖Lip ≤ 1.

Proof. Define for x ∈ X,

F (x) = inf{f(y) + d(x, y) : y ∈ A}.

Then, for x ∈ A, F (x) = f(x), since ∀y ∈ A, f(y) + d(x, y) ≥ f(x). Now,
for any x1, x2 ∈ X, and for any ε > 0, there exists y1 ∈ A, such that

f(y1) + d(y1, x1) ≤ F (x1) + ε.

Hence, we have

F (x2) ≤ f(y1) + d(y1, x2) ≤ F (x1) + ε+ d(y1, x2)− d(y1, x1)

≤ F (x1) + d(x1, x2) + ε.

Since this is true for any ε > 0, we have F (x2) ≤ F (x1)+d(x1, x2). Similarly,
we have F (x2) ≥ F (x1)− d(x1, x2).

Now, let us state and prove a result for concentration on the sphere of
(Rn, ‖ · ‖1).
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Theorem 22. (Schechtman-Zinn) Bn
1 := {x ∈ Rn : ‖x‖1 =

∑n
i=1 |xi| ≤ 1}.

λ is the normalized surface area measure on ∂Bn
1 . If f : ∂Bn

1 → R satisfies
|f(x)− f(y)| ≤ ‖x− y‖2, then,

λ(|f − Eλf | ≥ t) ≤ Ce−Cnt.

Proof. f : ∂Bn
1 → R is 1-Lipschitz w.r.t. L2 norm. So by Lemma 15, we

can extend f to a 1-Lipschitz function F on Rn. Next, consider Rn with
exponential measure

dµ(x) =
1

2n
e−

Pn
i=1 |xi|dx, S =

n∑
i=1

|xi|.

Then, the random variable (x1, . . . , xn)/S is uniformly distributed on ∂Bn
1

and the random variable (x1, . . . , xn)/S and S are independent. Applying
the Tensorization Corollary above, we complete our proof.

Theorem 23. (Gross’ Theorem) Let γn be the standard Gaussian measure
on Rn, then, ∀f : Rn → R, C1, we have

Entγn(f 2) ≤ 2

∫
Rn
‖∇f‖ − 22dγn.

Using Herbst’s Theorem, this implies concentration inequality for the Gaus-
sian measure on Rn.

We need Two Point log-Sobolev Inequality to prove Gross’ Theorem.

Lemma 16. (Two Point log-Sobolev Inequality) Ω = {0, 1}, µ(0) = µ(1) =
1/2. For f : {0, 1} → R, |Df | = |f(1)− f(0)|. We have

Entµ(f 2) ≤ 1

2
Eµ|Df |2.

Proof. W.l.o.g., we assume Eµ(f 2) = 1 and let f(1) = a1, f(0) = a0, then,
a2

1 + a2
0 = 2. We want to prove that

1

2
(a2

1 log a2
1 + a2

0 log a2
0) ≤ 1

2
(a1 − a0)2 = 1− a1a0.

Let λ = a2
0, w.l.o.g., 0 ≤ λ ≤ 1. Then, we want to prove that

1

2
(λ log λ+ (2− λ) log(2− λ)) ≤ 1−

√
λ(2− λ).
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Hence, we want to show that

ψ(λ) := λ log λ+ (2− λ) log(2− λ) + 2
√
λ(2− λ) ≤ 2 on [0, 1].

Now, ψ(0) = 2 log 2 and ψ(1) = 2.

ψ′(λ) = log
λ

2− λ
+

√
2− λ
λ
−
√

λ

2− λ
.

Now, let µ = λ/(2− λ). It suffices to show that

g(µ) := log µ+
1
√
µ
−√µ > 0.

We know that g(0) =∞, g(1) = 0 and

g′(µ) =
1

µ
− 1

2µ3/2
− 1

2
√
µ
< 0.

Hence, we get our desired result.

Proof of Gross’ Theorem. The tensorization result for entropy tells us that
it is enough to prove Gross’ Theorem for the case n = 1. Indeed, 2 is the
optimal constant in Gross’ Theorem. Let γ1 = γ be the standard Gaussian
measure on R. We aim to prove that

Entγ(f
2) ≤ 2

∫
R
(f ′)2dγ.

By Two Point log-Sobolev Inequality, we have Entµ(f) ≤ 1
2
Eµ|Df |2. Now,

for f : {0, 1}n → R, by tensorization for entropy, we get

Entµ(f 2) ≤ 1

2
Eµ

(
n∑
i=1

|Dif |2
)
,

where |Dif | = |f(x1, . . . , xi−1, 1, xi, . . . , xn)− f(x1, . . . , xi−1, 0, xi+1, . . . , xn)|.
Now, for φ : R→ R smooth and compactly supported. Let

f(x1, . . . , xn) = φ

(
x1 + · · ·+ xn − n/2√

n/4

)
.
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Then, applying Mean Value Theorem, we get

Entµ(f 2) ≤ 1

2
Eµ

(
n∑
i=1

|Dif |2
)

=
1

2
Eµ

n∑
i=1

(
φ′

(
x1 + · · ·xi−1 + yi + xi+1 + · · ·+ xn − n/2√

n/4

)√
4

n

)2

=
2

n
Eµ

n∑
i=1

(
φ′

(
x1 + · · ·+ xn − n/2√

n/4

)
+ o(1)

)2

= 2Eµ
1

n

n∑
i=1

φ′

(
x1 + · · ·+ xn − n/2√

n/4

)2

+ o(1)→ 2Eγ|φ′|2 as n→∞.

Finally, Entµ(f 2) → Entγ(φ
2) as n → ∞ and hence we complete the proof.

Theorem 24. (Bobkov-Ledoux-Maurey-Talagrand) Let ν be the symmetric
exponential measure on R, i.e., with density 1

2
e−|t|. νn = ν⊗n is the exponen-

tial measure on Rn. f : Rn → R such that

∀x, y ∈ Rn, |f(x)− f(y)| ≤ β‖x− y‖1, |f(x)− f(y)| ≤ α‖x− y‖2.

Then, we have

νn(|f − Ef | ≥ r) ≤ Ce−C min{ r
β
, r

2

α2 }.

Lemma 17. ∀0 ≤ c < 1, if f : R → R is C1 such that |f ′| ≤ c < 1, then,
we have

Entν(e
f ) ≤ 2

1− c
Eν((f

′)2ef ).

Proof. W.l.o.g., assume f(0) = 0. Then, we have

Entν(e
f ) = Eν(fe

f )− (Eνe
f ) log(Eνe

f )

≤ Eν(fe
f )− Eν(e

f − 1) = Eν(e
ff − ef + 1),

where I used the fact that u− 1 ≤ u log u for all u > 0. Now, for φ : R→ R,
C1, with bounded derivative, then, we have

Eν(φ) = φ(0) +

∫
R

sgn(t)φ′(t)dν(t).
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Entν(e
f ) ≤ Eν(fe

f − ef + 1)

=

∫
R

sgn(t)
(
f(t)f ′(t)ef(t) + f ′(t)ef(t) − f ′(t)ef(t)

)
dν(t)

=

∫
R

sgn(t)f(t)f ′(t)ef(t)dν(t)

≤
(∫

R
f 2efdν

)1/2(∫
R
(f ′)2efdν

)1/2

.

Also, notice that∫
R
f 2efdν =

∫
R

sgn(t)
(
2f(t)f ′(t)ef(t) + f(t)2f ′(t)ef(t)

)
dν(t)

≤ 2

∫
R
ff ′ef + c

∫
R
f 2efdν.

Hence, we have∫
R
f 2efdν ≤ 2

1− c

∫
R
ff ′efdν

≤ 2

1− c

(∫
R
f 2efdν

)1/2(∫
R
(f ′)2efdν

)1/2

,

which implies that ∫
R
f 2efdν ≤

(
2

1− c

)2 ∫
R
(f ′)2efdν.

Therefore, we conclude that

Entν(e
f ) ≤ 2

1− c
Eν((f

′)2ef ).

Lemma 18. (Tensorization) f : Rn → R is smooth and ‖∇f‖∞ ≤ 1. Then
for any |λ| < 1, we have

Entνn(eλf ) ≤ 2λ2

1− λ

∫
Rn
‖∇f‖2

2e
λfdνn.

43



Proof. By the tensorization result for entropy (Proposition 4) and the previ-
ous Lemma, we get

Entνn(eλf ) ≤ Eνn

n∑
i=1

Entν(e
λfi)

≤ 2

1− λ
Eνn

n∑
i=1

Eν

[
(λf ′i)

2eλfi
]

=
2λ2

1− λ
Eνn

[
n∑
i=1

(
∂f

∂xi

)2

eλf

]
.

Proof of Theorem 24. f : Rn → R. W.l.o.g., we can assume that f is smooth
and compactly supported and

‖∇f‖2 ≤ α, max
1≤i≤n

∣∣∣∣ ∂f∂xi
∣∣∣∣ ≤ β.

Assume first that β = 1 and ‖∇f‖∞. By Tensorization Lemma, if |λ| ≤ 1/2,
then,

Entνn(eλf ) ≤ 4λ4

∫
Rn
‖∇f‖2

2e
λfdνn

≤ 4λ2α2

∫
Rn
eλfdνn.

Now, we do the similar arguments as in the proof of Herbst’s Theorem. Let
h(λ) =

∫
Rn e

λfdνn and K(λ) = 1
λ

log h(λ). K(0) = Eνnf .

K ′(λ) =
−1

λ2
log h(λ) +

h′(λ)

λh(λ)
=

1

λ2h(λ)
Entνn(eλf ).

Hence, we have

λ2h(λ) ≥ 1

4α2
Entνn(eλf ).

λ > 0, K ′(λ) ≤ 4α2, |λ| ≤ 1/2, K(λ)−K(0) ≤ 4α2λ, λ(K(λ)−Ef) ≤ 4α2λ2.
Thus, Eeλ(f−Ef) ≤ e4α2λ2

. Hence, for any 0 < λ < 1/2, applying Markov’s
Inequality, we get

νn(f − Ef > r) ≤ 34α4λ2−λr,

with global minimum of 4α2λ2 − λr attained at λ = r/(8α2).
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(Case 1). If r
8α2 ≤ 1

2
, then take λ = r

8α2 , then,

νn(f − Ef > r) ≤ e−
r2

16α2 .

(Case 2). If r
8α2 >

1
2
, then take λ = 1

2
, then

νn(f − Ef > r) ≤ eα
2− r

2 ≤ e−
r
4 .

Hence, we have

νn(|f − Ef | > r) ≤ 2e−
1
4

min{r, r
2

4α2 }.

Now, we rescale back to the original case by applying to f/β, we get

νn(|f − Ef | > r) = νn

(∣∣∣∣fβ − E
f

β

∣∣∣∣ ≥ r

β

)
≤ 2e−

1
4

min{ r
β
, r

2

4α2 }.

At the end of our notes, let us discuss Stein’s Method for concentration
inequalities.

Definition 12. X, X ′ are exchangeable if (X,X ′) ∼ (X ′, X).

We assume X and X ′ to be exchangeable and F to be skew-symmetric,
i.e.,

F (X,X ′) = −F (X ′, X).

We also define
(i) E(F (X,X ′)|X) = f(X).
(ii) V (X) = 1

2
E(|f(X)− f(X ′)| · |F (X,X ′)||X).

We will see that bounds on V (X) will imply bounds on P(|f(X)| > t).

Lemma 19.

E(h(X)f(X)) =
1

2
E((h(X)− h(X ′))F (X,X ′)).

Proof. Since we have

E(h(X)F (X,X ′)) = E[E(h(X)F (X,X ′)|X)] = E(fh),

therefore, we get

E(h(X)F (X,X ′)) = E(h(X ′)F (X ′, X)) = −E(h(X ′)F (X,X ′)) = E(fh).
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Remark 13. Ef 2 ≤ E(V (X)).

Theorem 25. Assume, for any θ, E[eθf(X)F (X,X ′)] <∞ and |V (X)| < C
a.s. for some constant C > 0. Then, we have

P(|f(X)| ≥ t) ≤ 2e−t
2/(2C).

Proof. Define m(θ) = E[eθf(X)]. Then, by the Lemma above, we get

m′(θ) = E[eθf(X)f(X)] =
1

2
E[(eθf(X) − eθf(X′))F (X,X ′)].

Notice the fact that |(ex − ey)/(x− y)| ≤ 1
2
(ex + ey), since∣∣∣∣ex − eyx− y

∣∣∣∣ =

∫ 1

0

etx+(1−t)ydt ≤
∫ 1

0

tex + (1− t)eydt =
1

2
(ex + ey).

Then, we have

m′(θ) ≤ 1

2
E
(
|eθf(X) − eθf(X′)|
|θf(X)− θf(X ′)|

· |θf(X)− θf(X ′)| · |F (X,X ′)|
)

≤ |θ|
4

E
∣∣∣(eθf(X) + eθf(X′))(f(X)− f(X ′))F (X,X ′)

∣∣∣
≤ |θ|

4

[
2E((eθf(X)V (X)) + 2E((eθf(X′)V (X ′))

]
= |θ|E(eθf(X)V (X)) ≤ C|θ|E(eθf(X)) = C|θ|m(θ).

Therefore, m(θ) ≤ eCθ
2/2. Hence,

P(|f(X)| ≥ t) ≤ 2e−θt+Cθ
2/2

Now, minimizing the RHS in θ by taking θ = t/C, we get our desired result.

Theorem 26. (Chatterjee) Suppose for any θ, E[eθf(X)F (X,X ′)] < ∞ and
|V (X)| ≤ Bf(X) + C a.s. Then, we have

P(|f(X)| ≥ t) ≤ 2e−
t2

2C+2Bt .
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