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In mathematics, concentration of measure (e.g. about a median) is a prin-
ciple that is applied in measure theory, probability and combinatorics, and
has consequences for other fields such as Banach space theory. Informally, it
states that Lipschitz functions that depend on many parameters are almost
constant.

The concentration of measure phenomenon was put forth in the early
1970s by Vitali Milman in his works on the local theory of Banach space,
extending an idea going back to the work of Paul Lévy. The idea of concen-
tration of measure (which was discovered by V.Milman) is arguably one of
the great ideas of analysis in our times. While its impact on Probability is
only a small part of the whole picture, this impact should not be ignored. It
was further developed in the works of Milman and Mikhail Gromov, Maurey,
Pisier, Schechtman, Michel Talagrand, Ledoux, and others.

In our notes, we would start with isoperimetric problems, introducing
Bobkov’s Inequality, Maurey-Pisier Theorem etc. Then, we would state and
prove Brunn-Minkowski Inequality, Borell’s Inequality, Prékopa-Leindler In-
equality, and Gromov-Milman Theorem. Then, we would discuss Martingale
method, Talagrand’s Induction method. We will also mention Khintchine’s
Inequality and Kahane’s Inequality. We will then move onto Spectral meth-
ods, introducing Poincaré’s Inequality, log-Sobolev Inequality, Herbst’s The-

*These notes are based on the same-name course given by Prof Assaf Naor at Courant
Institute in the fall semester in 2008. I attended all the lectures but didn’t spend enough
time studying the materials at that time. However, after learning some spin glasses and
other stuff in probability theory, I started to appreciate the power and beauty of concen-
tration of measure. All the credits are due to Prof Assaf Naor whilst I'm responsible for
the typos and mistakes in these notes.



orem and tensorization. Results by Gross, Schechtman-Zinn, and Bobkov-
Ledoux-Maurey-Talagrand would be mentioned. Finally, we will discuss
briefly the Stein’s method.

Basic setting: (X, d) is a metric space, F the o-algebra of Borel sets on
X and p a Borel (probability) measure on X.

Theorem 1. (Lévy’s Inequality) Consider (S™71,|| - ||2), where S*~1 is the
Euclidean sphere in R™ and ||-||2 is the Euclidean metric. Let p be the normal-
ized surface area measure. If A C S™ ! is Borel measurable and p(A) > 1/2,
then, for any ¢ > 0, we have

plz e S*1d(x, A) > e) < 27/
We have an equivalent form of the Lévy’s Inequality above:

Theorem 2. If f: S" ! — R is Lipschitz with constant L, i.e.

[f (@) = f(y)] < Lllz = yll2.

Then, there exists ¢ € R, such that, for any ¢ > 0,

7L52
plr € 8" |f(z) — ¢ > e) < de @iz,

The Isoperimetric Problem: Given a € (0,1), and € > 0, we aim to find
the Borel subsets A C X with pu(A) = a such that u(A.) is as small as
possible, where

A.={z e X :d(x,A) :=inf{y € A, d(x,y)} < e}.

Definition 1. For A C X Borel, the boundary measure is defined as

pt(A) = liminf plAe) = n(4) = lim iglf %,u(AE\A).

e—0 g

Definition 2. I, is called the isoperimetric function if it is the largest func-
tion such that
VACX, u*(A)>1,(u(4)).

Definition 3. Given a € [0, 1], € > 0, define

¢a(e) = inf{u(A:) : A C X, u(A) = a}.



The concentration of measure problem is to find good lower bounds on
Pa(€)-

Lemma 1. Let (X,d) be a metric space and p is the Borel measure. If
f X — R is Lipschitz with constant L, then, there exists some M € R,
such that, for any e > 0, we have

pee X |f@) - M ze) <2 (1-6(3)).

Proof. Let M be a median of f, i.e.
M=inf{teR:plx € X: f(z) >t) >1/2}.
Andlet A={zre X : f(x) > M}. Then
v € Ay = Fyday) < 7 = (@) = fy)] < Ld(e,y) <=,

and
yeA= flyy >M= f(x) > M —«.

Hence {r € X : f(x) < M — e} € X\A,/, and pu(A) > 1/2. Therefore, by
the definition of ¢y /2, we have

p(xEX:f(:c)gM—g)gl—qbl/Q(%).

Now, let B ={z € X : f(x) < M}. Then

Hence, we have

ploeX:|f@) =Mz <2 (112 (7))

]

Now, we will discuss isoperimetric problem for Gaussian measure. Here
are just some notations we would use:

1 —x2/2 _ ’
\/%e . O(x) —/_Oo o(s)ds.

¥ [0,1] = [0,1/v2a],  ¥(t) = (P7'(1)).

¢(x) =




Proposition 1. (i) ¢(0) = ¢ (1) = 0.
(i1) (1 — ) = (x) for all x € [0, 1].
(iii) " = —1

(iv) (¢")? is a convex function on [0,1].

Proof. (i) ¥(0) = ¢(®71(0)) = ¢(—o0) = 0. Similarly, (1) = ¢(c0) = 0.
(i) ¥(1 —2) = (@7 (1 — 7)) = (=07 (2)) = (7 (2)) = P(x).
(iii) Direct computations.
(iv)
n2\" _ ///__2/:_ ¢”¢_<¢/)2: 1+(¢/)2
[
Let ¢, : R" — R,
1 =3

Pn(z) = We 2,

and define the n-dimensional Gaussian measure as
= / On(x)dx, A CR"
A

Note that -, is invariant under rotations, i.e., for any orthogonal n xn matrix
U, and any A C R", we have v,(A) = v,(UA).

Theorem 3. (Bobkov’s Inequality)(B,)
If f:R"™ — [0, 1] is smooth (locally Lipschitz), then,

o( [ san) < [ I9sB+orra.

Before we start to prove Bobkov’s Inequality, let us state another result
and use Bobkov’s Inequality to prove it.

Theorem 4. (Borell-Sudakov-Tsirelson) For any Borel A C R™, we have

Yn(As) = @(27H (7a(A)) + ).



Proof. Now, for A C R", define

1 re A
flz)1—42A g e AN\A
0 r € R"\ A,

Then, f is Lipschitz with constant 1/¢ and ||V f]la < 1/e a.e. Now, also use
the Bobkov’s Inequality, we get

von) <o ([ fan)
< [ VIVsI+ o,
< [ 19+ [ wthan,
R R™

< é%(As\A) + Tn(AN\A).

Hence, we have
.1
Y (A) = lim inf —7,(A\A) = (9 (A4)),

and thus I, > v. Define h(e) = ®~!(,(A.)) and w.l.o.g. A is a finite union
of balls. Then, we get

/ r—l_ As) 'V:(AE)
i) — Tl _
&= S )~ A =
where I used the fact that

4 At ) —(A)
d_67n(As> = }lbli% A =7, (Ae).

Now, since h/(¢) > 1 for all €, we have h(e) > h(0) 4+ . Thus
7 (yn(A:)) = @7 (7a(A)) + e,

which implies that
Tn(As) = (27 (1n(4)) + ).



Remark 1. In general, if I, > ¢’ o g7*, then

1(A) > g(g7 " (u(A)) +e).

Remark 2. The solution of the isoperimetric problem for ~,, will be half space.
Let a = 7,(A) and there exists s such that ®(s) = a, i.e. s=® !(a). Now
define

H={zeR":21<s} and H.={reR":zy <s+¢e}.
Then, we have
Y(H)=®(s)=a and ~,(H.) =®(s+e)=d(d '(a)+e).

Now, we will try to prove the Bobkov’s Inequality. Let B, denote the
Bobkov’s Inequality for R”, then, we have the following lemma.

Lemma 2. B, A B,, = B,im-
Proof. f : R™™ — [0,1] smooth. R™™™ = R™ x R™. Write f = f(z,y),
r € R" y € R™. For a fixed x € R", define

g(x) = [ flz,y)dvm(y).

Rm

Then, it is clear that

Voa) = [ Vafdun)

Also, notice that for any u,v > 0, we have

([ + (o) = (] e



Thercfore, we get
o ([ renan@anm) =v ([ @)
<[ (‘ o Rmf(x,y)dvm(y))2)1/2d’yn(x)
< [ ([ 19t

211/2
+ (/Rm IV f(z,9)l3 +¢(f($7y))2]1/2 d’ym(y)) } dy ()
< /m /n IV f ()3 + 1V f (@ )5+ o (flz,y))?] Y2 Ay () dym ()
= [ A1+ v,

Ve f (@, y)dym(y)

Rm™m

Corollary 1. To prove Bobkov’s Inequality, it is enough to prove Bj.

In order to prove B, we will introduce a discrete version of Bobkov’s
Inequality first, which will be useful later.

Let Q, = {£1}" and p be the uniform probability measure on €2,,. For
f:Q, — R, define

1

8if($17332>"' 7$n) = §[f(9€1>'“ 7xn) - f(331,"' y Li—1y —Lg, L1, ,5Un)]7

and Vf:<alf782f7 7anf) e R™

Theorem 5. (Discrete Bobkov’s Inequality)(DB,,)
For any f : {£1}" — [0, 1], we have

d 5 2dpu.
o[ 0m) < [ 9o+ o(rpan

Lemma 3. DB, N DB,, = DB, 1,.

Proof. The proof is similar to the proof of B, A B,, = B, im. m
Lemma 4. DB,,Vn = B;.



Proof. f : R — [0,1] smooth and sup|f’[,sup|f”’| < oo. Define F, :

{£1}* — [0,1] as
Eo(zy, - ,an) = f (%) '

Applying Mean Value Theorem, we get

2
Ty + -+ Ty
2
Zit-Han Tt AT 1Tt AT

i B e | I Y C SRR

P 2 Vn
<i lf/ T+ T+ G T+ Ty 2—lf’ T R
=gl Vi n vn

2 o Ti+ T+ St T+ T, T4+ Ty,
<_ !/ ! . / et B
<2137 v (s

2 ~ 2 A Moo ll f" Moo
< 2 2 ()| < 2 Meoll) fleo
< LIS 30 el ol < S

Therefore, we have

[ VIR oE
{£1}"

s/{ﬂ}n \/f’ (LN)ZJC(LHYW(%)
. /R VP +o(fPdn by CLT.

Now, applying DB, to F},, we get
[ IVRB oz o ([ Fa)
{+1}n (£1}n

= 2 S ) R
-v (/{il}" / ( NG > d,u) (4 </R fd%) by CLT.




Now, in order to prove the Bobkov’s Inequality, it suffices to prove DB;.
For f: {£1} — [0,1], f(1) = a, f(—1) = b, where a,b € [0, 1], then it suffices
to prove the following result.

Lemma 5. (DB, ) For any a,b € [0,1], we have

(53 <3 () o (552 o).

Proof. Fix ¢ € [0,1], g(z) = ¥(c+ x)* + x*, where

x € A(c) := [-min{c, 1 — ¢}, min{c, 1 — c}].

atb and x = %%, we need to prove that

Choosing ¢ = 47 5

— _ V9(@) +/g(—x)
Now, after squaring twice, it is equivalent to prove that

169(0)* + (g9(x) — g(—2))* < 89(0)(9(x) + g(—=)).

Set h(z) := g(x) — g(0) = ¥(c+ x)? + 2% — 1(c)?. Our goal is to prove that
for fixed ¢ € [0, 1], then,

(h(z) — h(=2))* < 8¥(c)*(h(z) + h(—x)) Yz € A(c).

Next, notice that the function R(z) := h(z)+ h(—z) — 2¢’(c)x? is convex on
A(c), because

Y(c+ )+ (c— )
2

R'(x) = —4'(e)*| 20,

by Jensen’s Inequality. Now, R is even, convex and R(0) = 0, which implies

that R(z) > R(0) =0, i.c.
h(z) + h(—2) > 20/ (c)%?.
Hence, it suffices to prove that
169/ (¢)?p(c)?x* > (h(z) — h(—x))*,

9



or, equivalently,

()|’ (c)| =

‘h(x) — h(~2)

‘wc +2)* —¢(c—a)?

C

Since by Proposition 1, ¢ is symmetric around 1/2, w.l.o.g., c € [0,1/2],x >
0,0<z<c<1/2and Y(c+x) > 1P(c—z). So we need to prove

ap((e) > Uer e wlem o)

Set u(z) := ¥ (c+ z)? — (c — x)% Then, using ¢"¢) = —1 from Proposition
1, we get

u'(z) =20 (c +2)* = ¥'(c —2)*) <0,
since by Proposition 1, (¢/)? is convex and symmetric about 1/2. Now wu is

concave and nonnegative, thus u(z) < u(0). O

We now completed the proof of DBy, and hence Bobkov’s Inequality.

Corollary 2. If f : R" — R s Lipschitz with constant L, then AM € R,
such that o
Yo (w €R™: |f(2) = M| > ) < Kem /L),

where K is a universal constant.

Proof. For A C R™ such that a := 7, (A) > 1/2 then, by Theorem 4,

V2T
>1-— L h e 2dp > 1 — 56_062/2
V2T - 2

for some universal constants K and C'. Now let M be the median of f and
define

(A) = D@ () + &) =1 — —— / e 2y
Ha)+e

Y

A={zeR": f(x) > M} and B={xeR": f(x) < M}.
Then, we have 7v,(A) = v,(B) = 1/2, and

T (z €R":[f(2) — M| =€)
<A ER": f(3)> M+e)+ym(z€R": f(z) < M —¢)
< A (R™\ AL /) + 7 (R™\Be 1) < Ke ¢57/CL),

10



Proposition 2. (X,d) is a metric space and p is the Borel probability mea-
sure. f: X — R. The followings are equivalent:

(i) 3Ky, 61, 3A € R, such that YC > 0, P(|f — A| > C) < Kje 9,

(ii) 3K, 05, such that YO > 0, P(|f — f| > C) < Koe 2" where f, f
are independent identical distributions.

(i) K3, 65, such that YC > 0, P(|f — Ef| > C) < Kse %",

(iv) K4, 64, such that VO > 0, P(|f — My| > C) < K1e%", where M;
s the median of f.

Moreover, if we have

J
Ky < Ky < 2Ky < 2Ky <AKy and 8,26, > 7 >
then, the inequalities in (1)-(iv) can hold simultanenously.

Proof. (i)=(ii).
RS- f120) SP(lf—fH z%) +1P><|f—A| > %)

2

< 2K1€751CT.
(i)=(iii). For A > 0,

E (eAQ\f*ﬂ?) = / N2CNCP(|f — f| > C)dC
0

< / INZCeN Koe 27 .
0

Choose A = /% and Ee?1/-/” < K,. But d(t) := e%¥/? is convex. Hence

K, >E ~eQ\f f1? >E ef\f IEf|2
Hence, using Markov’s Inequality, we have

P(|f-Efl=C)=P <6%2\f—Ef|2 > 6%%;2)

99 2
~%20

<e Ee%‘f_EﬂZ < ng_%CQ.

(ili)=(iv). Let Cy = +/(log2K3)/05. Then,

1
P(f —Bf] 2 Co) < 5 = Kye—5:C3.

11



We get P(f > Co+Ef),P(f < Co—Ef) <1/2, hence,
Ef —Co <My <Ef+ Cp.
So, if C' > 2CY, then
P(lf = My = C) <P(|f —Ef| = C = Ch)

S K36_53(C_CO)2 S K3€_%302.

If C' < 20}, then

67%302 > 67%303 = L
- 2K
Therefore,
P(|f — M| > Cp) < 1 < 2K3e ¢/,
(iv)=-(i). Trivial. O

Remark 3. We can also formulate and prove a version for general tails.

Now, let us discuss the case of the Euclidean sphere:
Shi={r e R": ||zl = 1}.

Let p be the normalized surface area measure on S™ ! and let d be the
geodesic metric on S™ 1.

Theorem 6. (Lévy’s Theorem) Balls (spherical caps) are the solutions of
the isoperimetric problems on S™~'. i.e. if we have A C S" !, x € S"L,
r > 0 such that

w(A) = pu(y € " d(z,y) <7}
Then u(Ac) > w(B(x,r +¢)).

Theorem 7. f: S" ' — R, Lipschitz with constant L. Then,

8 qf(x) - /S fdu’ = 5) < Ke S

Theorem 8. (Maurey-Pisier) F' : R* — R, Lipschitz with constant L.
Yo ~ (g1, 9n), where g1, 92, ..., g, are i.i.d. standard Gaussian random
variables. Then,

2t2

P(|F(g1,---,90) —EF(g1,.-.,9a)| > t) < 2e =217,

12



Proof. By approximation, we may assume that F' is continuously differen-
tiable. Let
G:(gla"'7gn) and H:(hb,hn)

be independent Gaussians. For 6 € [0, 7], define Gp = G'sin+ H cos ) € R"™.
Then, Gy = G cosf — H sinf. Since

) 46
Gy _( sin@ cosf G
d%Gg ~ \ cosf —sind H

and we know the orthogonal transformation of Gaussian is again Gaussian,
thus, (Go, £G) has the same distribution as (G, H) (We call this Key Fact).
Let ¢ : R — R be any convex function. By Jensen’s Inequality and Key Fact,

Ea(o(F(G) —ExF(H))) < Eauo(F(G) — F(H))

w/2 /2
</></0 d%F(GV;)dG) ¢</0 <VF(G9),d%Ge>d9>]

< %E /UW/Q & <g<VF(G9), d%c:@de) — K <g<VF(G), H)de) .

Therefore, we have

n

E(¢(F(G) ~EF(G))) <E¢ (g

i=1

For A € R, ¢(t) = e, we have

s n o) . ue) .
E <€)‘§ i aTi.(G)hz> = Eq H EHG)‘Q afi (G)hi

12272 OF 2 2 2.2
_ et T I (550) L

Thus, for any A € R,

EAMFE-EF(@) < A5

Define X := F(G)—EF(G). Then, for any A € R, Ee** < ™ *A*/8 Applying
Markov’s Inequality, we get

27242

]]ED(X > t) — ]P)(e)\X > €>\t) < B—At]Ee)\X < G_AH_%'
Now, let (\) = =\t + 2 L;v‘ Minimizing ¢ over A\, we get our desired
result. -

13



Theorem 9. (Lévy’s Isoperimetric Theorem) Let pu be the normalized surface
measure on S™~ with Euclidean metric. A C S™ ! is Borel and C' C S™ 1 is
a cap (ball in the Euclidean metric) with u(C) = p(A). Then, for any e > 0,

1(A) = p(Ce).
Definition 4. For A, B C R", define the Minkowski sum of A and B as

A+B:={a+b:a€ A bec B}.

Theorem 10. (Brunn-Minkowski Inequality) If A, B C R"™ are compact and
nonempty, then

Vol(A+ B)# > Vol(A)# + Vol(B),

where the equality holds if and only if A = x +rB for some x € R", r > 0,
up to measure zero.

Proof. Tt is enough to prove the case when A, B are disjoint unions of axis
parallel boxes. Let A, B be disjoint unions of finitely many axis parallel boxes
and K be the total number of boxes. Let us do induction on K.

For K =2, A =1[_,L, B =1[,Ji where [;, J; C R are intervals.
Let a; = Vol(I;) and b; = Vol(J;), then Vol(A + B) = Hl 1((1Z +b;). So,
we want to show that ], (a; + b)Y > ], al™+ 1T, b/™. This follows
from AM-GM since

n 1/n n 1/n n n
a; b; 1 a; 1 b;

Next, let’s do the induction step. Let H be an axis parallel hyperplane such
that on both sides of H there is an entire box from A. (Such a hyperplane
H always exists.) Let HT, H~ be the two sides of the hyperplane. Define

A=ANHY and A=ANH".

\[01([1)/\/01( ) = A €[0,1] and translate B perpendicular to H such that if
B=BNH"' and B= BNH, then Vol(B)/Vol(B) = \. For A, B, A, B, the
total number of boxes is Smaller than K. By induction hypothesis, we have

Vol(A + B)w > Vol(A)w + Vol(B)=, Vol(A+ B)r > Vol(A)x + Vol(B).

14



Now, (A+ B)U(A+B) C A+ B, where A+ Be HY and A+ B € H™ are
disjoint. Hence, we get

- - N . 11/n
Vol(A + B)Y/» > [VOl(A + B) + Vol(A + B)}

1/n

> [(Vol(A)7 + Vol(B)'/") " + (Vol(A)V/" + Vol(B)/") ]
- [)\ (VOl(A)Y™ 4+ Vol(B)/™)" + (1 = A) (Vol(A)/" 4 Vol(B)" ”)"} "
= Vol(A)"/™ + Vol(B)"/".

0

Corollary 3. (Isoperimetric Theorem for Lebesgue Measure) Let BY := {x €
R : ||zl < 1}. A C R™ is Borel and r > 0 such that Vol(rBY)=Vol(A),
then

Vol(A:) > Vol((r + €)BY).

Proof. A. = A+ eBj}. Applying Brunn-Minkowski Inequality, we get
Vol(4.) > (Vol(4)7 + v01(5Bg)%)” = (Vol(rB)® + v01(533)%>”

_ ((r + g)vOl(Bg)%)" — Vol((r + ) By).

Lemma 6. The following two inequalities imply each other.
(i) VA, B # () and A, B C R" compact,

Vol(A + B)w > Vol(A)= + Vol(B)r.
(i1)) YA, B C R"™ compact and Y\ € [0, 1],
Vol(AA + (1 — \)B) > Vol(A)* Vol(B)' .

Proof. (i)=(ii). By (i) and concavity of log, we have

%log(Vol()\A + (1= 2)B)) > log(AVol(A) + (1 — MVol(B)%)

> A log Vol(A) + log Vol(B).
n

15



(ii)=(i). Define

- 1 - 1 Vol(A)!/»
A=—— A B=——"B — .
Vol(A)/n Vol Byl M A= T ol B
Then, by (ii), we get
A+B

A+ (1= \)B = Vol ( y ) > Vol(A)Vol(B)'™ = 1,

Vol(A)L/n + Vol(B)V/n
which implies that
Vol(A + B)# > Vol(A) + Vol(B).
0

Definition 5. A measure g on R" is log-concave if VA € [0,1], VA, B C R"
compact,
pAA+ (1= X)B) > p(A) u(B) .

Example 1. If du = e~ /®dx, where f(z) is convex, then, u is log-concave.

Lemma 7. (Borell’s Lemma) Let ju be log-concave probability measure on R™
and K CR™ closed, convex and centrally symmetric (i.e. v € K & —x € K)
and p(K) =a. ThenVr > 1,

r+1

l—u(rK)Sa(l_a) n

a

Proof. For r > 1 and any = € K,y ¢ rK, if

r—1 2
=z €K,
7"+1x+7"—|—1y :
then, since K is convex,
r+1 r—1
= — K.
Yy 5 (rz) + 5 (—rz) er
Contradiction. Hence,
r—1 2
K
7”—1—1QE+7"—1-1ygé

16



Therefore, we have

Hence, we get

Lma= 1= ulf) 2 (2 RACR) + )

2 r—1 2 r—1
1

> (1 —p(rK))

Theorem 11. (Prékopa-Leindler Inequality) Let m, f,g : R" — [0,00) be
measurable functions and X € [0,1]. Assume that for any =,y € R,

m(Az+ (1= Ny) > f(z)g(y)'

([ ) (L)

Remark 4. For A, B C R" compact, let f =14, g = 1p and m = 1ya11-x)B-
Then it is easy to check that

Then, we have

Laara-ne > 14157,

since it is trivial if t ¢ Aory ¢ B. lf t € Aand y € B, then Ax+ (1 —\)y €
AA + (1= X)B. Therefore, by Prékopa-Leindler Inequality and Lemma 6, we
proved the Brunn-Kinkowski Inequality

Vol(AA + (1 — \)B) > Vol(A)*Vol(B)' .

Proof of Prékopa-Leindler Inequality. We do induction on n. For n = 1,
we will first prove Brunn-Minkowski in dimension 1. A, B C R, compact,
measurable. For any € > 0, there exists t € AN B C R and a translation of
A such that

Vol(AN[t,00)) > Vol(A) —e > 0, Vol(B N (—o0,t]) > Vol(B) — e > 0.

17



W.l.o.g., we can let t = 0, then, we get
Vol(A") > Vol(A) — &, Vol(B') > Vol(B) — &,
where A’ = AN0,00) and B’ = BN (—o0,t] and we have
AUB CA+ DB,
where A" and B’ are disjoint. Therefore, we get
Vol(A + B) = Vol(A" + B") > Vol(A") + Vol(B') > Vol(A) + Vol(B) — 2¢.

It is true for any ¢ > 0, thus Vol(A + B) >Vol(A)+Vol(B). Now, w.Lo.g.,
assume f and g to be bounded and ||f||s = ||g]lcc = 1 since otherwise we

can consider

/ g and m

1fllee™ Mgl 111591155
Now, for ¢t € (0, 1), define

A={zeR: f(z)>t},B={xeR:g(x) >t},C={xr e R:m(x) > t}.
Since A,B#0,t <1, |fllc = l|9]lcc =1, we have
Vol(AA + (1 — A)B) > Vol(A) + Vol(B).

Also, AMA+ (1 — \)B C O, since for x € A, y € B, we have

mAz + (1= Ny) > f()g(zx) ™ > =1
Hence, we get

Vol(m >t) > AVol(f > t) + (1 — A\)Vol(g > t).
Now, integrate w.r.t. ¢, we get

/Rm = /000 Vol(m > t)dt > /01 Vol(m > t)dt

1

> A/l\/ol(f > t)dt + (1 — )\)/ Vol(g > t)dt

0

frenen fo (1) (J5)
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where the last inequality above is obtained by AM-GM. Now, let’s do induc-
tion on dimension n. Suppose f,g,m : R" — [0,00), R* =R x R"™' ¢t € R,
s € R" ! and let

fe(s) = f(t,5), 9:(s) = g(t, s),mu(s) = m(L, s).
Fix to,t; € R, define t = Xy + (1 — Aty for every u,v € R",
me(Au+ (1 — Nv) = m(t, \u+ (1 — XN)v) = m(A(to, u) + (1 — X)(t1,v))
> f(to,u) g(t,0)' ™ = fi(w)gi, ()",
where f,, g+,, m; satisfy the induction hypothesis at n — 1. Thus,

For all ty,t; € R,
m(Mo + (1= Nty) > f(to) gt

g also satisfy the induction hypothesis at dimension 1. Thus,
B 1-\ A 1-\
/ L= (L) (o) = (L) (Lo)

Now, we're going to state and prove Gromov-Milman Theorem. Before
we do that, let’s give the basic settings first. Let || - || be a norm on R".

]

By =K ={z eR": [lz]| < 1}

is the unit ball. Then, it is clear that K is convex and centrally symmetric.
Conversely, any convex centrally symmetric body is a unit ball of a norm.

Definition 6. A norm || - || is called uniformly convez if Ve > 0, 3§ = §(¢),
such that

YV Y € By, |t —y|| > e, then H H<1—5
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Remark 5. On R"™, uniformly convexity is equivelant to strictly convexity
plus compactness.

Definition 7. The modulus of uniform convezity of || - || is

r+y

5||.H(8> := inf {1 —

H el ol < Ll — ) > }
Now, if ||z||2, [|y]l2 < 1 and ||z — y||2 = €. Then
e+ gl + e — 9112 = 2llz]3 + 2l < 4,

which implies that ||z + y||3 + ¢* < 4. Hence

2 2
rT+y < 1_€_N1_€_,
2 |I,=V 1 8
and )
€
Opp(e) =1 =1 —e2/d~ —
For every norm || - ||, 0j(e) < 1 — /1 —¢€2/4.

p—1_2 2 <
Oy, (€) ~ e tole) 1sp<2
g Cpe? +0(e?) p>2

Let || - || be a norm on R™. () = d(e). K ={z e R": ||z| < 1}. visa
Borel probability measure such that

__ Vol(ANK)
v(A) = “NVol(K)

w is a Borel probability measure on 0K = S (cone measure),

~Vol([0,1]A)  Vol(Up<i<i{ta : a € A})
vAS S, )= T Vol(K) '

Theorem 12. (Gromov-Milman Theorem)
(i) YA C K, the unit ball, and Ve > 0, we have

6725(8)77,

1= ,



where A, ={r e R,z e K:Jy € A, ||z —y| <¢e}.
(i) VA C S := 0K, we have

H(A) > 1 — ——e290e/2m,

where A, ={x e R",x € S:3Jy € A, |z —y| <e}.

Proof. (i) For AC K, B=K\A.,ifx € A, y € B and ||z — y|| > ¢, then,
by definition of d(g), we have ||(z + y)/2|| < 1 — d(g), which implies that
(A+ B)/2 C (1 —-0(¢e))K. Hence, by Brunn-Minkowski Inequality, we get

A+ B

v(A)Y2u(B)Y? < v ( ) < (1=6(e)" < e ™),

Hence, we have

1
1— As — u(B) < —2n6(€)'
A) = v(B) < e
(i) A € S, A =[1/2,1]4, B = S\A. and B = [1/2,1]B. For z € A,
y € B, it is not hard to show that ||z —y|| > €/2. Then we have ||(z+y)/2|| <
1—9(¢/2), which implies that (A+ B)/2 C (1—6(¢/2))K. Hence, by Brunn-
Minkowski Inequality, we get

A+ B

v(A)V2u(B)? < ( ) < (1—6(e/2))" < e ™0E),

Notice that
0,1]A\A = K\[1/2,1]A = [0,1/2]A = %[0, 1]A.
Hence,
v([0,1]A) > v(A) > (1 — 2%) v([0,1]A).
O

Now, we will discuss Martingale Method in concentration of measure. Let
(Q, F,P) be a probability space.
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Lemma 8. Let {),Q} =Fy C F, C--- CF, =F be a filtration. And fo =
Efo, f1, fo, ..., fn = [ is a Martingale w.r.t. this filtration. For 1 < i < n,
define the Martingale difference as d; = f; — fi_1. Then, we have

+2

P(|f —Ef| >t) < 2e =i 4k
Proof. Notice that Vo € R, e* < x + e Therefore, VA € R,
M < Ny + N
Hence, we get

B[ |Fi_1] < AE[d;|Fi1] + B[N % | Filq] = B[N %

(lem)

mn—1 1l
=FE HexdiE(exngn_l)] < Mldilag (H ekdi>

Li=1 =1

20| d. 112

Therefore, we get

=1

<< Ml
Thus, by Markov’s Inequality, YA > 0, we have
P(f-—Ef>t) < e MEAUES < e~ A2 (il

Now, minimizing the RHS in A, and consider P(f — Ef < —t) similarly, we
will get our desired result. O]

Remark 6. Indeed, a stronger inequality is known. For M = maxi<;<, ||d;||e
and 02 = || 7 E(d?|Fi-1)]|oo, we have

P(|f —Ef| > t) < 2¢ 5 sinh ™ (M/%),

Definition 8. Let S, be the permutation group of {1,2,...,n}. We define
a metric d on S,, as

d(m,7) = %{1 <i<n:r@) £70).

Define the uniform measure p on S, as
_ Al
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Theorem 13. (Maurey) If f : S, — R is Lipschitz with constant L, then,

p(m € St | f(m) —Ef| > 1) < 2¢7 562

Proof. Fix k € {1,2,...,n}, for any distinct indices i;, ..., i, € {1,2,...,n},
define

Ay ={me S, (1) =1dy,...,m(k) =g},
which forms a partition of S,,. Let F, = o (A, i, 91, ..,10). Take iy, ... i
distinct and A = A, ;. an atom of F; and let

B = Ail ..... in,r € fk+17 C = Azl ..... in,s € fk—H

B, C are atoms of Fi.;. lf m € B, |B| = \C], then (r, s)7r € C. Thus, we get

E(f|fk+1)|3 _E<f|fk+1 c = |B| Zf |C| Zf

el

Therefore, we have

’E(f|fk+1)|3 CE(f|Fe)le] <

Now, let fk = E(f|fk) and dk+1 = fk—i-l — fk If B € fk—i—l is an atom,
then there exists a unique A € F, which is an atom such that B C A. Let
N =#{C C A: atoms of Fi.1}. Then, we have

dk+1‘B

Ay Y R

CCA: atoms of Fp41
1
SN Z E(f[Fre)lz — E(f|Frt1)lo
CCA: atoms of Fi41

2L

S_
n

By Lemma 8, we have

2
H(mw € Sp: |f(x) —Ef| 2 1) < 2¢ W77 = 26 w0t
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Now, let G be a finite group and p is the uniform measure on it.
G=Gy, 202G 2G,2---2G, ={e}.
d is an invariant metric on G and the quotient metric on G/G; is given by
p(Giw, Gyy) = min{d(a,b) : a € Gyz,b € Gy} = d(zy™ ', Gy).

We can check that since d is an invariant measure, p is also a metric. Let
a; = diam(G;/Gi11), then the “length” of Gy 2 --- D G, isl=+/> . a?

=1 """

Theorem 14. (Schechtman) If f : G — R is Lipschitz with constant L w.r.t.

metric d, then,
2

pllf —Ef| > 1) < 27557,
Remark 7. The case G = 5,, gives us the Maurey Theorem.

Theorem 15. (Talagrand) Let (Q, F, 1) be a probability space. For any
n € N, define the probability space (™, F&", u®") and let P,, = u®". Define
the metric d as

d((l’l,ﬂﬁg, cee 7xn)7 (y17y27 s 73/71)) = #{1 S { S n:x; 7é yl}

Then, VA C Q", we have

1 1 et4et\" 1 2
E td(I,A) < _ < t TL/4
P SE,A\2 1 ¢

Remark 8. Vf : Q" — R Lipschitz with constant 1/n,

2

tn

P.(x e Q":|f(x) —Ep, fl| > 1) <de T6.
We need to following Lemma to prove Talagrand’s Theorem.

Lemma 9. If g : Q — [0, 1] is measurable, then,

Jminfet b [ st < 5+ ==
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Proof of Talagrand’s Theorem. We do induction on n and use the Lemma
above in our proof. For n = 1, we have

1
/etd(x,A)d/,L(x) = /(1A + ' lo\adp = / min {et7 —} dp
Q Q I
1 1 el 4et 1 /1 e+et
< w5+ = Rl ‘
Jo Tadp \2 4 u(A) \2 4

Assuming the case n is true, let’s prove that the case n+ 1 holds as well. For
ACOQ =" x Q and w € Q, define

Alw) :={zeQ": (z,w) € A}, B= U Aw).

wef

It is not hard to see that
(i) If A(w) # 0, then d(A, (z,w)) = d(A(w), x).
(i) d(A, (z,w)) < 1+d(B, ).
Now, we get

etd(A’x)d]P’nH(ac):// MA@ AP (2)dp(w)
0 n

( . min{etdA@.a) et . otd(Ba)y dIP’n(x)) ()
" {m (3+°1) mm o+ 1) fae
T ) .5 /Qmm{et’ P(A(w);/Pn(B)}du(w)

N et + e t\ "M 1 B 1 1 N et e t\"!
4 P,(B) - i P, (A) \2 4 ’

]

Qn+1

IN

IA
S— 5— 55—
=

IN

7~ N~/
N|— N

Let Xy, Xs, ..., X, be normed spaces, with norms || - ||x,, 1 <7 <n. For
Q; C X;, let p; be probability measures on 2; such that diam(£2;) <1 for all
1. Define
(QP,) = (1 X - X Qg X oo+ X ),

25



and
n 1/2
d((ﬂfl,yQ, e 7$n)7 (ylayQa T 7yn)) = (Z ||xl - ?/2”§(2> :
i=1
Also, define conv(f2) as the convex hull of Q. Under these assumptions, we

have the following Theorem.

Theorem 16. (Concentration for Convexr Functions) If g : conv(2) — R is
a conver function and is Lipschitz with constant 1, then,

Pu(lg— M| > 1) <de™/*,
where M is a median of g w.r.t. P,.
Proof. Let A={z € Q:g(x) < M}, then, P,(A) > 1/2. We claim that
{reQ:g(x)>M+t} C{xeQ:d(x,conv(A)) >t}
Because if d(z,conv(A)) < t, then Jyy,...,yx € A, \; >0, Zle A; = 1 such

that i
d (1: > Ay) <t
=1

Now, ¢ is Lipschitz with constant 1, so we have

k k k
g(z) <t+g (ZAy> SHZAZ-g(yi) < t+Z>\z’M:t+M.
=1 =1

i=1
By (ii) of Talagrand’s Convex Hull Theorem which I will state and prove
later, we get

Pn(g(z) > M +1) < et/ < 207t/

P,.(A)
Now, define B = {x € Q: g(z) < M — t}, similarly, we have
{z:g(x) > M} C{x:d(z,conv(B)) > t},

and

1 2
<P,(g>M)<——¢et/

which implies that P, (B) < 2e~**/4. Therefore, we conclude that
Py

N —

(lg— M| >t) <de™/4.



Remark 9. We need the convexity assumption on g to get dimension inde-
pendent concentration.

Example 2. ; = {0,1} € [0,1] and Q = {0,1}". d is the Euclidean metric
and here n is even. Define

A= {($1,$2,...7xn) € {0’1}71 : le S g}’
i=1

and ¢ : {0,1}" — R such that
g(x) = d(zx, A).

Then, ¢ is Lipschitz with constant 1. Take (zy,...,2,) € {0,1}" such that
S (22, — 1) > py/n for some p > 0. Then, for every y € A,

n

& +pv/n n p
E _ .2>§ . >n—__:_
(-731 yz) = — (xz yz) = 9 9 2\/57

=1

which implies that ||z — y|la > /p/2n'/%. Since it is true for every y € A,

we get
9(x) = d(z, A) > @n/

Since

=1

re {01y ga) > 2L 2 e Y1) 2 v
| i) }

we have

ACCE @n/) > P, (i(zxi e Nﬁ) — Clp) as n— .

i=1

Therefore, there is no dimension-free concentration.

Theorem 17. (Talagrand’s Convex Hull Theorem)
VA CQ, define f(x, A) = d(x, conv(A)), then
(i)

(i)




We will need the following Numerical Lemma to prove Talagrand’s Con-
vex Hull Theorem.

Lemma 10. (Numerical Lemma) Vr € [0,1], 3\ = A(r) € [0, 1], such that

Proof. Set f(A\) = r~*exp[(1 — \)?/4]. Then,

s 1 1—A _a=n? oy
f()\)—(log(r) 5 )e r =0,

when A =14 2logr < 1. So the best A for our Lemma is
A =max{0,1+ 2logr}.

(Case 1: A =0). Then, 1+ 2logr <0, so 7 < e~!/2. It is easy to check
that
et/ <2-—r §2—e‘1/2.

(Case 2: A > 0). Then, r > e~ /2. We need to have

2 _r> 70—1—21og7“6(10gr)2

9

ie. log(2 —r) > —(1+ 2logr)logr + (logr)? = —logr — (logr)?. So, we
need to show that

f(r) :=1log(2 —7)+ (logr)* +logr >0, 0<r<1.

Notice that
-1 N 2logr 1

/ —
fr) = 2—r r r’
and f(1) = 0. So, it suffices to check f'(r) <0 for 0 <r < 1. O

Proof of Talagrand’s Convex Hull Theorem. (ii) can be obtained from (i) by
applying Markov’s Inequality. Therefore, we only need to prove (i). We do
induction on n. For n = 1, if € A, then f(z,A) = 0 and if © ¢ A, then
f(z, A) < 1. Therefore

/Q et A dpy(x) < i A) + ML — i A)).

28



Denoting A = p;(A), we need A + (1 — N)e'/4 < 1/ i.e.,
P(A) = A2+ A1 = Ne/t < 1.
This is true since (1) = 1 and
W'(N) =20+ (1 —2)\)et/? > 2A(1 — et/4) + /4
>2(1— ey pet/t =2t >0,

Now, assuming the case n and we will try to show the case n + 1. For
A CQ xQ,. 1 and for every w € .1, let

Aw)={yeQ:(yw)ed}, B= (] Aw)
wEn4+1
Claim: Fix z = (y,w) € Q X Q,11, then, for every A € [0, 1],
F(z AP S My, Aw))’ + (1= N f(y, B + (1 = 1)
Let’s prove the Claim first. Take = € conv(A(w)), for which

Fly AP =Ny =2l =) Ny — il
i=1
Take u € conv(B), for which
Fly.B) = lly —ull® =Y llyi — will..
i=1

For any (xr,w) € conv(A), there exist some vq,...,v, € Aw), \; > 0,
o A =, such that © =Y, A,

(r,w) = Z Ai(v;,w) € conv(A).

Jw' € conv(Q41), (u,w) € conv(A). u = >" v, v; € B, Jw; € Qyy,
W= Aw;i € conv(€Qy41), (vi,w;) € A. Now, we have
f(z,A)? < d(z,Mz,w) + (1 = N)(u,w))?
=d(y, Az + (1= Nu)’ + lw — I — (1= A%, ,,
< My =zl + @ =Ny — ul)* + (1 = A)?[lw —o'|Ix
<Ay =zl + (1= Nly —ull® + (1 = A)?

n+1
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which proves the Claim.
Fix w € Q,11 and X € [0, 1]. We get

/ ()42 gp, (1) < / eF MA@ HA-NT B 1N P (4)
Q Q

s / ( HwAW) A( f<y3)2>
Q
(112 1.5 =
<e 1 (/ el W AW)? dP,( ) ( dP,(y ))
Q

LA 1 . 1 1 (Pu(AWw)) 46(1_»2/4
ST B Ay B B (Pn(B)) '

Now, apply Numerical Lemma with r = P,,(A(w))/P,(B) < 1, we can find
some A = A\(w), such that

/ P, (y) < Po(B)™" (2 _ M) |

P (B)

Finally, integrating over w € .1, we get

% z,A 1 _ ]P)n+1(A)
/mme TR () < P,(B) (2 P,(B) )
1 Pan(A) [ Pu(A) 1

T Po(A)  Pu(B) (2_ P.(B) ) = Pni1(A)

]

Next, we introduce the Khintchine Inequality, is a theorem from proba-
bility, and is also frequently used in analysis. Heuristically, it says that if we
pick n real numbers ay, ..., a,, and add them together each multiplied by a
random sign +1, then the expected value of the modulus, or the modulus it
will be closest to on average, will be not too far off from +/[ai[? + - - - + [a,|?

Theorem 18. (Khintchine’s Inequality) Let &;, be i.i.d. random variables
such that P(§; = 1) = P(§ = —1) = 1/2. Then, for all1 < p < oo, 3A,, B,

such that for all n, Vaq,...,a,R, we have
p\ 1/p n 1/2
i=1

A (z ) < (Efe{ﬂ}n
i=1 =1

Z §iai
where B, = O(/D).
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Proof. Notice first that (321, a?)V? = \/E[> I, a;&[2 Let X = Y0 a:é.
By the simple fact that (e’ +e7*) < /2, we get

n )\al + \a; n
e 2242 A2 2
EeAX: | | | | '/22672?:10'1'.

=1

W.lo.g., we assume » ., a? = 1. Thus, Ee* < e’/2. Now by the usual
argument, i.e., applying Markov’s Inequality and optimizing over A, we get

P(|X]|>t) < 2e/2,

Therefore, we have

E| X|P = / ptP—IIP’(|X| > t)dt < / 2ptp_le_t2/2dt < (Cp)p/Q.
0 0

p\ 1/p n 1/2
i=1

Now, if p > 2, we obtain lower bound with A, = 1 by Jensen’s Inequality. If
1 <p <2, define § € [0, 1] by % = g + %. Applying Holder’s Inequality, we
get

Hence, for B, = O(,/p), we have

<E£e{i1}”
=1

Z i

n 1/2
(Z a?) = [1X12 < IXIRIXIE" < IXNp B X"

Thus, X2 < B,” |IX]|,. O
Theorem 19. (Kahane’s Inequality) Let &;, be i.i.d. random variables such
that P(& = 1) = P(§; = —1) = 1/2. Then, for all 1 < p < oo, 3A,, B, =

O(\/p) such that for any normed space X, anyn € N, any x,,...,z, € X,
we have

n n 1/p n
AR G| < (EH Zﬁﬂﬁ!”) < BE|Y &l
=3 i=1 =1
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Proof. We only prove the upper bound here. §); = {—1,1} with uniform

measure. f: R" — R,

n
f(ah- .- ,CLn) = || Zaixi”7
i=1

and f is convex. Define
" 1/2
o= sup E x*(z;)? :
ereX*[lzr|=1 \ (=5

Claim: o = || f||Lip-
Now, let’s prove the Claim. Notice that

n
|fllp = sup uzamu— sup sup (z)

- 1
aes" aesn 1 [jz*||=1 i=1

1/2
= sup sup Zam (x;) = sup <Zx (x;) > =o0.

* 1
2% | =1 aeSn~ wl=1 \ =

Let M be a median of f on {£1}". Theorem 16 implies that
P(|f — M| >t) < de" o7

Hence, we get

o /O ptB(f > )dt
=1

2M oo
g/ ptp_ldt—i—/ ptP~te i dt < (CM)? + (Ca/p)?.
0 2

M

]

Corollary 4. (E¢|| Y1, &u||P)V/? < C(M +0/p), where M is a median of

| 22;1 ixil| and o = SUP||x*\|:1<Z?:1 5’7*(9’31)2)1/2-

Next, we will discuss spectral methods. Let (2, F,P) be a probability
space. A is a set of measurable function. £ : A — R,, where £ is the
energy functional. A key example is (X, d, u) where d is a metric, p a Borel
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probability measure, for f : X — R, define the “abstract length of the
gradient of f at x € X7 as

|Vf’($) = hr;:s;lp%

if f is Lipschitz. Let A = {f : X — R Lipschitz} and
&)= [ 19f16Pdu(o).
b
Definition 9. (i) f: X — R,
o.(f) =E(f -Ef)*=Ef* — (Ef)”.
(i) f: X = R.,
Ent, (f) := E(flog f) — (Ef) log(Ef).

Definition 10. The pair (A, ) satisfies the Poincaré Inequality with con-
stant C' if

< [[flluip,

Vie A o*(f) <CEf).

Definition 11. The pair (A, £) satisfies the log-Sobolev Inquality with con-
stant C' if
Vfe A Ent(f?) < CE(f).

Example 3. Here’s an example of Poincaré Inequality. If (X, ¢) is Rieman-
nian manifold and here

E(g) = / IVgl?dp,

where g is the normalized Riemannian volume. Then we have Poincaré In-
equality with constant C' = 1/A;, where \; is the first eigenvalue of Laplacian.

Proposition 3. (i) o?(\f) = A\202(f).
(1i) Ent(\f) = AEnt(f), for A >0, f > 0.
(iii) Ent(f) > 0.

Proof. (i) o?(\f) = E(Af —EXf)? = N\202(f).
(ii) We do the following computations.

Ent(Af) = E[Af log(Af)] — E(\f) log EAS
= \E(flog f) + Mog \Ef — AEflogEf — Mog AEf = AEnt(f).
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(iii) ¥ () := xlog x is convex. So, Jensen’s Inequality implies that

E(f) — ¢ (Ef) = Ent(f) = 0.
0

Lemma 11. Given ® : R — R a C' function, (X,d, 1) a probability metric
space and f: X — R Lipschitz, then, we have

&(@0 ) < Iy | 100 @)Pdnto)

Proof. For any z € X, we have

VDo fl(x) = limsup 2 W) = /@)l

y—x d(y,x)
e NRU@) = U@ W) = S@] o
=1 yﬂxp If(y) _ f(:L’)| d(y, ) < Hf“Llp'q) (f( ))‘

Hence, we get

E@of) = /Wv¢oﬂdu<nﬂnm/|¢ )du(a).

]

Theorem 20. (Gromov-Milman) (Q, P, d) is a metric probability space. A =
{bounded Lipschitz functions}. And (A,E) satisfies the Poincaré Inequality
with constant C'. Then, for any |lambda| < 2//C, and any f : @ — R
Lipschitz with constant 1, we have

(i) B[} —EN] < 240/(4 C)\?).

(i1) ¥t > 0, we have the exponential concentration

P(|f — Ef| > t) < 240e~V &,

Proof. (i) Using the Poincaré Inequality with the function e2/ and applying
Lemma 11 with ®(z) = e*, we get

Af
2

w\y

2
EeM — (Ee2/)? = o2(e27) < CE(e27) < C)\ZE@V.
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Hence, we get

2
1 A2 1 1 1
Eevgl_c_A2<Ee2f> _C_A2< _c_A2> Ee4f>
4 4 16
2k—1
<o (i) ) )
k=1 L=

And notice that

A 2m 2
(EeTmf> = <E (1—1—2%]”—1—0(2%))) — e

as m — oo and

- 1 240
S s H( _c_v> SToow
k=1 aF
Therefore, we have
240
AJ-Ef)] <
Ele I= =
(ii) By (i), for any A > 0, we have
240
Alf=Ef|\ —At Y
P(|f —Ef| >t) < (EeM e < T ot
So taking A = /2/C, we get (ii). O

Remark 10. Same holds for f to be Lipschitz (not necessarily bounded). For
example, we can truncate f by considering

fo <M
M= M  f>M
-M f<-M

Theorem 21. (Herbst’s Theorem) (2, P, d) is a metric probability space and
A = {bounded Lipschitz functions} and (A, &) satisfies log-Sobolev Inequality
with constant C. Then for every function f : ) — R Lipschitz with constant
1, we have for any X € R,

B BN < XA P(|f —Ef| > t) < 2e/C,
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Proof. Applying log-Sobolev Inequality to the function e*/? and applying
Lemma 11 with ®(z) = e*, we get

A

ol

Ent((e?)?) = Ent(eM) = EeMAf — (EeM) log(Ee)

2
A E(eM).

<CEN? < T

Therefore, we have
>\2
E(eMAf) — E(eM) log(EeM) < CZE(eV).
Define h()\) = E(eM). Then, h'(\) = E(fe*) and
2

AR'(A) — (M) log h(\) < C)\Zh()\),

which implies (5 logh(X))" < C/4. Hence

1 Ao
iy Y log h() = tim 505 = i =7~ =

Hence, we have
1 C
—logh(\) <E —\.
3 ogh(A) <Ef+ 4)\
Thus,

c

EeM = h(\) < QBTN o ReAED < eV,
L]

Remark 11. Same holds for f to be Lipschitz (not necessarily bounded) by
truncation.

Now we consider the product spaces and Poincaré Inequality and log-
Sobolev Inequality tensorize.

Q=0 X xQu,  p=py XX [y

frQ =R Fixiand z1,..., 21, i1, T € [[;4, Q5
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Proposition 4.
Ent < Z E Ent s Li—1,T4415-+5 J?n)) .

Remark 12. We also have

n
L)< 3B (G ).
=1

By Proposition 4, we get the following Corollary.

Corollary 5. If each €); satisfies log-Sobolev Inequality with constant C', A;
with energy &; and

A={f:Q=R: fie A}, &)= _E&(f)
=1

then, (0, &, A) satisfies log-Sobolev Inequality with the same constant C.
Before we prove Proposition 4, we recall the famous Young’s Inequality.

Lemma 12. (Young’s Inequality) p : Ry — R, increasing and p(0) = 0,

qg=pt, i.e q is the inverse function of p. Then

Yu,v € Ry, uvg/ p(s)ds+/ q(t)dt.
0 0

Now, we prove the following Lemma which will be used to prove Propo-
sition 4.

Lemma 13.
VieQ—Ry, Ent(f)=sup{E(fg): Ee? <1}.
Proof. Let p(t) =log(t + 1) and ¢(t) = €' — 1. Then, by Young’s Inequality,
w < (u+1)loglu+1)—u+e"—1—w.
Now, let x =u + 1 and y = v, we get
Ve,y >0, zy<zlogx—x+e".
Hence, fg < flog f — f+¢9. Normalize Ef = 1 and assume Eef < 1, we get
Efg <Eflog f = Entf.
Taking g = log f, we finish the proof. ]
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Proof of Proposition 4. f:§y x---x €, =0 —R,. g:Q — R such that
Eed <1.

. f eg(xl ~~~~~ xn)d,ul(xl) cee dui—l(xi—l)
! o xy) =1
g'(x1,...,m) og < f e9@ie@n)dyyy (21) - - - dpag ()

depends only on (z;,...,x,). We have

Zgi:log%ZQ = g<> ¢,

and ]Eme(gi)i = 1. Hence,
ZEfg _Z]E (E,, fi(g"):) ZE Ent(f;).
Now, by Lemma 13, we complete the proof. O

A key example for Poincaré’s Inequality is for p the measure on R, such
that du(t) = se7!ldt. We have the following Lemma.

Lemma 14. p is a measure on R such that du(t) = %e"t‘dt. Then, for every
Lipschitz function f : R — R, we have

o2(f) < 4 /R (f)2dp.

Proof. Standard approximation tells us that it is enough to deal with f € C*
bounded. Now, for any ¢ : R — R smooth, we have

= 1/OO o(t)e It
/ &' (t)sgn(t e M,

by integration by parts. If we choose ¢(t) = (f(t) — f(0))?, then we get

00 —|¢|
E,(f(t) = £(0))* = 2/_ (f(t) = £(0)).f ()sgn(t )—dt
<2 (Bulf = FO)1)" (1))
But we know that E,(f(t) — E,(f))* < ( (t) — £(0))?, hence

Eu(f —Euf)* < AE.(f)"
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Corollary 6. (Tensorization) For x € R™, we have exponential measure on
R" as

1
du(z) = 2—ne_”xH1dx.

Then, for any f : R™ — R Lipschitz, we have

o.(f) <4 [ IVfl3du.
R’ﬂ
Furthermore, by Gromov-Milman, if f : R™ — R s 1-Lipschitz, i.e.

[f(x) = F)l < [l =yl
then, u(|f —E,f| >t) < Ce "

Lemma 15. (X, d) is a metric space. A C X and f: A — R is 1-Lipschitz,
1.€.
then, 3F : X — R, such that F|s = f and ||F ||, < 1.

Proof. Define for x € X,
F(x) = inf{f(y) + d(z,y) - y € A}.

Then, for x € A, F(z) = f(z), since Vy € A, f(y) + d(x,y) > f(x). Now,
for any x1,z9 € X, and for any € > 0, there exists y; € A, such that

fly) +d(yr, v1) < Fxy) +e.

Hence, we have

F(x2) < f(y1) +d(yr, 22) < F(x1) + € + d(y1, 22) — d(y1, 1)
S F(l’l) + d(l’l, 1'2) + €.

Since this is true for any € > 0, we have F(z5) < F(x1)+d(x1,22). Similarly,
we have F'(xq) > F(x1) — d(xy, x2). O

Now, let us state and prove a result for concentration on the sphere of
(R™ [+ [l1)-
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Theorem 22. (Schechtman-Zinn) B} == {zx € R" : ||z||; = Y1, || < 1}.
A 1s the normalized surface area measure on OBY. If f : 0B} — R satisfies
[f (@) = fW)] < llz = yll2, then,

M|f = Eaf| >t) < Ce @M.

Proof. f : OB} — R is 1-Lipschitz w.r.t. Ls norm. So by Lemma 15, we
can extend f to a 1-Lipschitz function F' on R™. Next, consider R" with
exponential measure

1 n -
du(z) = Q—He’Zizl @ildy, S = Z |4
i=1

Then, the random variable (z1,...,z,)/S is uniformly distributed on 0B
and the random variable (z1,...,z,)/S and S are independent. Applying
the Tensorization Corollary above, we complete our proof. O

Theorem 23. (Gross’ Theorem) Let vy, be the standard Gaussian measure

on R™, then, Vf : R® — R, C*, we have

Bnt,, (f?) <2 / IVF| - 22,

n

Using Herbst’s Theorem, this implies concentration inequality for the Gaus-
sian measure on R™.

We need Two Point log-Sobolev Inequality to prove Gross’ Theorem.
Lemma 16. (Two Point log-Sobolev Inequality) Q@ = {0,1}, pu(0) = p(1) =
1/2. For f :{0,1} = R, |Df| =|f(1) — f(0)|. We have

1
Entu(fz) < §Eu|Df|2

Proof. W.lo.g., we assume E,(f?) = 1 and let f(1) = a1, f(0) = ao, then,
a? 4+ a? = 2. We want to prove that

1 1
5(@% loga] + aglogad) < §(a1 —ap)® =1 — ajay.

Let A = a3, w.l.o.g., 0 < XA < 1. Then, we want to prove that

%()\log)\ +(2-AN)log(2 =) <1 —A2-A).
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Hence, we want to show that

PY(A) == Alog A+ (2—A)log(2 — ) +2y/A(2—X) <2 on[0,1].
Now, 1(0) = 2log2 and (1) = 2.

A 2\ X\
¢(A)—log2_k+\/ \ —\/Q_X

Now, let u = A/(2 — \). It suffices to show that

1
g(p) ==logpu+ — —/u>0.

Vi

We know that ¢(0) = oo, g(1) = 0 and

(1) = 1 1 1 <0
TR RN
Hence, we get our desired result. O]

Proof of Gross” Theorem. The tensorization result for entropy tells us that
it is enough to prove Gross’ Theorem for the case n = 1. Indeed, 2 is the
optimal constant in Gross’ Theorem. Let 7, = v be the standard Gaussian
measure on R. We aim to prove that

But, (2) <2 / (/).

By Two Point log-Sobolev Inequality, we have Ent,(f) < %EM|D fI%. Now,
for f:{0,1}" — R, by tensorization for entropy, we get

« (S0re).

=1

Ent,(f*) <

N | —

where |D;f| = |f(x1, ...,z 1, Lz oo xn) — f(o1, -0 i1, 0,201, ., )|
Now, for ¢ : R — R smooth and compactly supported. Let

(A —n)/2
f(xl,...,mn)—gb( Py )
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Then, applying Mean Value Theorem, we get
1 n
B < 32, (10

2
. 2
(Tt Yy T+ X, — )2 4
E, 0] —
, n/4 n

. 2
_%Eu o (m1+...+xn—n/2>+0<1)>

Ve
t+ T,
n/4

2
—n/2

n/ ) +0(1) — 2E,|¢'|* as n — oo.
Ent, (¢*) as n — oo and hence we complete the proof.

]

Theorem 24. (Bobkov-Ledouz-Maurey-Talagrand) Let v be the symmetric
exponential measure on R, i.e., with density %e"t'. v, = V®" is the exponen-
tial measure on R™. f:R"™ — R such that

Vo,y € R" |f(2z) = f) < Blle —ylh,  [f(2) = fW)] < allz =yl

Then, we have
. T 7‘2
va(|f —Ef| 2 1) < Ce M),

Lemma 17. V0 < c < 1, if f : R — R is C' such that |f'| < ¢ < 1, then,
we have

2
Ent,,(ef) < 1—EV((f/>2€f)-
—c
Proof. W.l.o.g., assume f(0) = 0. Then, we have

Ent,(e/) = E,(fef)
<E,(fe!) —E,(ef

(E,e) log(E,e)
D=E,(e/f—el +1),

where I used the fact that u — 1 < ulogwu for all u > 0. Now, for ¢ : R — R,
C', with bounded derivative, then, we have

E.(6) = $(0) + / sen(t)' (£)du()
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Enty(ef) < Ey(fef —el + 1)
- / sen(t) (F(O) 1/’ + F(H)e® — f/(1)e!®) du(t)

- / sen(t) £ (1) ' (1)e! D (t)

([rew)” (forea)”

Also, notice that
[ #2eiv = [ sn(®) 1 F OO + 1021 0 vt
R R

§2/ff’ef+c/f26fdu.
R R
Hence, we have

2 !
/Rerfdljgl—_C/Rffefdu
9 ; 1/2 o 1/2
_C(/Rf% du) (/R(f)Qe dV) ,

2
/Rerfdyg (1ic> /R(f’)Qefdy.

Therefore, we conclude that

which implies that

Ent,(ef) <

]

Lemma 18. (Tensorization) f : R™ — R is smooth and ||V f|le < 1. Then
for any |\ < 1, we have

22

Entn <
() < =

IIVfII eMdv,.
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Proof. By the tensorization result for entropy (Proposition 4) and the previ-
ous Lemma, we get

Ent,n(e) < By Ent, (eM7)

i=1

n 2
< 2B 3B [0 - 2

= EV"
1—A i=1

2 (5]

]

Proof of Theorem 24. f:R"™ — R. W.l.o.g., we can assume that f is smooth
and compactly supported and

<
IVFllz < o, max

<p.

Assume first that § =1 and ||V f||«. By Tensorization Lemma, if |A\| < 1/2,
then,

Ent,»(eM) < 4X* IV fl5eMdv,
R

§4)\2a2/ eMdy,.

Now, we do the similar arguments as in the proof of Herbst’s Theorem. Let

h(A) = [on eMdv, and K(X) = $logh(X). K(0) =E,n f.

1 BN
= 5z 0N+ 508 = S

K'(\) Ent,n»(e*).

Hence, we have

1
Mh(N) > @Emw(e”).

A> 0, K'(\) <402, [N <1/2, K(\)—K(0) < 4a’X\, A(K(\) —Ef) < 4a2)\2.
Thus, Ee*-EN < ¢4°X  Hence, for any 0 < A\ < 1/2, applying Markov’s
Inequality, we get

Valf —Ef >7) < 31X

with global minimum of 4a?)\? — Ar attained at A = r/(8a?).
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(Case 1). If ¢ < 3, then take A = g5, then,

r2

va(f —Ef > 1) < e T,

(Case 2). If & > 3, then take A = 3, then
vo(f —Ef >7r) <e* 75 < e i,

Hence, we have

— L min{r r? }
vn(lf —Ef| >7r) <2e 1 107t
Now, we rescale back to the original case by applying to f/3, we get

vn(lf —Ef| >7) =vn ( % —Eé‘ > %) < 9o~ imin( )

]

At the end of our notes, let us discuss Stein’s Method for concentration
inequalities.

Definition 12. X, X’ are exchangeable if (X, X') ~ (X', X).

We assume X and X’ to be exchangeable and F' to be skew-symmetric,
ie.,

F(X,X') = —F(X', X).

We also define
(i) E(F(X, X')|X) = f(X).
(it) V(X) = 3E(|f(X) = f(X)] - |[F(X, X")]|X).

2

We will see that bounds on V' (X) will imply bounds on P(|f(X)| > t).

Lemma 19.

Proof. Since we have
E(R(X)F (X, X")) = E[E(h(X)F(X, X")|X)] = E(fh),
therefore, we get
E(h(X)F (X, X)) = E(M(X")F(X', X)) = ~E(h(X')F(X, X)) = E(fh).
0
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Remark 13. Ef? <E(V(X)).

Theorem 25. Assume, for any 0, E[e? ) F(X, X")] < 0o and |V (X)| < C
a.s. for some constant C' > 0. Then, we have

P(If(X)| > t) < 2¢77/C9).
Proof. Define m(6) = E[e?/(X)]. Then, by the Lemma above, we get
1 /
mi(6) = BP0 F(X)] = LE[(e?/) - O F(x, X'

Notice the fact that |(e” — e¥)/(z — y)| < 5(e” + €¥), since

et — eY

r—y

1 1
1
= / et 1=y < / te® + (1 —t)e¥dt = i(ex +ée¥).
0 0

Then, we have

0 < g (=T, 0 X, X
' (0) < 38 (o= o B0 = 6£CO] - P00 )
< Ul \( 00 4 M) (£(X) — (X)X, X))

< 2 [om [ V(X)) + 2E(( V(X))
= WIEEIV (X)) < COBE) = Clolm(0),

Therefore, m(0) < /2. Hence,
P(f(X)] 2 t) < 2677002

Now, minimizing the RHS in 0 by taking 6 = t/C', we get our desired result.
]

Theorem 26. (Chatterjee) Suppose for any 6, E[e®/ X F(X, X")] < oo and
\V(X)| < Bf(X)+ C a.s. Then, we have

+2
P(f(X)] = 1) < 2e™ 207250,

46



